
- •Содержание
- •Раздел 1 расчет линейной части магистральных нефтегазопроводов
- •Раздел 2 расчет резервуарных парков
- •Раздел 3 расчет приемных и раздаточных устройств
- •Раздел 4 расчет технологических трубопроводов
- •Раздел 5 расчет баз сжиженного газа (бсг)
- •Раздел 6 расчет хранилищ природного газа
- •Раздел 7 расчет оборудования газораспределительных станций (грс)
- •Раздел 8 расчет очистных сооружений
- •Раздел 1 расчет линейной части
- •2 Построение гидравлической характеристики магистрального нефтепровода (нефтепродуктопровода)
- •Расчет числа перекачивающих станций (пс)
- •2 Гидравлический расчет магистрального нефтепровода ( нефтепродуктопровода) после увеличения пропускной способности
- •Расчет физико-химических параметров газа
- •1 Расчет физико - химических параметров газа
- •2 Определение коэффициента сжимаемости газа
- •Технологический расчет магистрального газопровода
- •1 Гидравлический расчет магистрального газопровода
- •2 Выбор оптимального диаметра магистрального газопровода
- •3 Расчет температурного режима магистрального газопровода
- •Построение графика изменения давления в магистральном газопроводе
- •Гидравлический расчет участка магистрального газопровода
- •2 Построение графика изменения давления в магистральном газопроводе
- •Увеличение пропускной способности магистрального газопровода
- •Механический расчет магистральных трубопроводов
- •1 Определение толщины стенки труб
- •1 Вариант
- •2 Вариант
- •3 Вариант
- •2 Определение напряжений в трубопроводе
- •3 Проверка прочности трубопровода при эксплуатации
- •Расчет патрона
- •1 Расчет длины патрона
- •1.1 Расчет длины патрона под железной дорогой.
- •1.2 Расчет длины патрона под автомобильной дорогой
- •1.3 Расчет длины патрона для всех видов дорог
- •2 Определение (выбор) диаметра патрона
- •3 Расчет толщины стенки патрона
- •Раздел 2 расчет резервуарных парков перекачивающих станций (пс) и нефтебаз расчет резервуарного парка
- •1 Расчет вместимости резервуарного парка
- •1.1 Расчет вместимости резервуарного парка перекачивающей станции
- •1.2 Расчет вместимости резервуарного парка нефтебазы
- •2 Обоснование выбора резервуаров
- •3 Определение коэффициента оборачиваемости резервуаров
- •4 Расчет обвалования резервуаров
- •4.1 Расчет обвалования двух резервуаров
- •4.2 Расчет обвалования одного резервуара
- •5 Определение габаритов резервуарного парка
- •Расчет фундамента под вертикальный стальной резервуар (рвс)
- •Расчет оптимальных размеров вертикального стального резервуара (рвс)
- •Расчет вертикального стального резервуара (рвс) на устойчивость от вакуума
- •Механический расчет вертикального стального резервуара
- •Раздел 3 Расчет приемных и раздаточных устройств для нефти и нефтепродуктов технологический расчет железнодорожной эстакады
- •Расчет количества причалов
- •Расчет числа раздаточных устройств
- •Расчет тарных хранилищ
- •Раздел 4 расчет технологических трубопроводов
- •Перекачивающих станций (пс) и нефтебаз
- •Гидравлический расчет технологических трубопроводов
- •Перекачивающих станций (пс) и нефтебаз
- •1 Расчет всасывающего трубопровода
- •1.1 Гидравлический расчет всасывающего трубопровода
- •1.2 Проверка надежности всасывания
- •2 Расчет нагнетательного трубопровода
- •2.1 Гидравлический расчет нагнетательного трубопровода
- •Подбор насосного оборудования
- •Расчет компенсаторов технологических трубопроводов перекачивающих станций (пс) и нефтебаз
- •4÷ 6 Диаметрам трубы; б, в – лирообразные соответственно гладкий и складчатый
- •Расчет опор технологических трубопроводов перекачивающих станций (пс) и нефтебаз
- •1 Расчет подвижных опор
- •2 Расчет неподвижных опор
- •2.1 Расчет концевой опоры
- •2.2 Расчет опоры на перегибе трубопровода
- •2.3 Расчет промежуточной опоры
- •Раздел 5 расчет баз сжиженного газа (бсг) расчет физико - химических параметров сжиженного углеводородного газа (суг)
- •1 Расчет физико – химических параметров сжиженного углеводородного газа (суг)
- •2 Расчет состава паровой фазы
- •Расчет резервуарного парка базы сжиженного газа (бсг)
- •1 Расчет вместимости резервуарного парка базы сжиженного газа (бсг)
- •1.1 Расчет вместимости резервуарного парка для суг для хранилищ группы а,
- •1.2 Расчет вместимости резервуарного парка для суг для хранилищ группы б
- •2 Обоснование выбора резервуаров
- •Продолжение таблицы 65 – Техническая характеристика сферических резервуаров для хранения пропана и бутана ([27], стр. 129, табл. 42)
- •Т аблица 69 – Техническая характеристика сферических резервуаров
- •3 Расчет обвалования резервуарного парка бсг
- •Вместимости резервуаров в группе ([27], стр. 127)
- •Расчет предохарнительного клапана резервуара для сжиженных углеводородных газов (суг)
- •Расчет приемо – раздаточных устройств баз сжиженного газа (бсг)
- •1 Расчет железнодорожной эстакады
- •Расчет баллононаполнительного цеха (отделения)
- •Ручное наполнение баллонов
- •Автоматическое наполнение баллонов
- •3 Расчет сливного отделения
- •Раздел 6 расчет хранилищ природного газа расчет аккумулирующей способности магистрального газопровода
- •Расчет подземного хранилища природного газа (пхг)
- •Расчет вместимости пхг
- •2 Расчет производительности пхг
- •3 Расчет числа компрессоров для закачки газа в пхг
- •Раздел 7 расчет оборудования газораспределительных станций (грс)
- •Расчет регулирующего клапана грс
- •Расчет предохранительного клапана грс
- •Расчет нефтеловушки
- •Расчет площадок для подсушивания осадка
- •Расчет шламонакопителей
- •Литература
- •1 Основная литература
- •2 Дополнительная литература
- •3 Научно-популярная литература
- •4 Специальная литература
Расчет компенсаторов технологических трубопроводов перекачивающих станций (пс) и нефтебаз
Длина трубопровода, свободно лежащего на опорах, меняется с изменением температуры стенки трубы в зависимости от температуры перекачиваемой жидкости и окружающей среды. Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникнут термические напряжения растяжения или сжатия. Возникшие в трубе термические напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода и не зависящие от длины.
Термические напряжения могут достигать больших значений и приводить к разрушению трубопроводов, опор и арматуры. Поэтому предусматривается компенсация термических напряжений путем применения специальных устройств – компенсаторов. По конструкции они делятся на линзовые, сальниковые и гнутые (П-, Z- и лирообразные).
Линзовые компенсаторы изготавливают по нормалям МН 2894-62÷2908-62 ([64], стр. 79, рис. 5.10 и рис. 24 данного пособия ) для компенсации деформации трубопроводов с диаметром условного прохода от 100 до 1200 мм с условным давлением до 6 кгс/см2.
Они представляют собой гибкую вставку в трубопровод, состоящую из попарно сваренных линз, так что каждая пара образует волну высотой 50÷200 мм.
Компенсаторы выпускают одно-, двух-, трех- и четырехлинзовыми. Компенсирующая способность одной линзы колеблется от 7 до 16 мм ([64], стр. 80-81, табл. 56). Линзовые компенсаторы характеризуются герметичностью и малыми размерами, но применяются ограниченно ввиду малой компенсирующей способности и низкого допускаемого давления
(6 кгс/см2 ).
Сальниковые компенсаторы по нормалям машиностроения МН2593-61 и МН2598-61 ([64], стр. 83, рис. 5.11; [11], стр. 206, рис. 117 и рис.25 данного пособия) изготовляют одно- и двусторонними из стальной трубы (сталь марки Ст3) на условное давление 16 кгс/см2 для труб с диаметром условного прохода от 100 до 1000 мм. Сальниковые компенсаторы состоят из стального или чугунного корпуса и входящего в него стакана. Уплотнение между кор-
пусом и стаканом создается сальником. Для его набивки используют асбестовый прографиченный шнур по ГОСТ 1779-72 и термостойкую резину по ГОСТ 7338-77. Характеристика сальниковых компенсаторов приведена в [64], стр. 82, табл. 5.7. Для сальниковых компенсаторов требуется весьма точный монтаж. Перекосы присоединяемых трубопроводов вызывают заедание стакана и разрушение компенсатора. Сальниковые компенсаторы имеют большую компенсирующую способность ( от 150 до 500 мм), но применяются ограниченно, так как недостаточно герметичны и требуют постоянного надзора за уплотнением сальников.
Рис.24 Линзовые компенсаторы:
а – однолинзовый; б – четырехлинзовый
1 – патрубок; 2 – полулинза; 3 – стакан; 4 – фланец; 5 – дренажная трубка
Рис. 25 Сальниковый односторонний компенсатор:
1 – фланец; 2 – стакан; 3 – нажимная втулка; 4 – уплотнительный элемент;
5 – корпус; 6 – опора; 7 – шпилька
Рис.26 Гнутые компенсаторы:
а – П - образный из бесшовных труб при нормальном радиусе гнутья и длине, равной