
- •Вопрос №1 Создание и эволюция эвм. Нулевое поколение.
- •Вопрос №2 Создание и эволюция эвм. Первое поколение (1940-1950-е годы).
- •Вопрос №3 Создание и эволюция эвм. Второе поколение (1950-1960-е годы).
- •Вопрос №4 Создание и эволюция эвм. Третье поколение (1960- сер. 1970 годов).
- •Вопрос №5 Создание и эволюция эвм. Четвёртое поколение (1975-1990).
- •Вопрос №6 Создание и эволюция эвм. Пятое поколение.
- •Вопрос №7 Основные классы современных эвм. Классификация эвм по принципу действия, по назначению.
- •Вопрос №8 Основные классы современных эвм. Классификация эвм по размерам и вычислительной мощности.
- •Вопрос №9 Понятие архитектуры эвм. Структурная схема современного компьютера.
- •Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
- •Вопрос №11 Дополнительные интегральные микросхемы: контроллер прямого доступа, контроллер прерываний, математический сопроцессор.
- •Контроллер прямого доступа к памяти (dmac)
- •Контроллер прерываний
- •Математический сопроцессор
- •Вопрос №12 Функциональные характеристики эвм
- •Вопрос №13 Внешние устройства: классификация, краткая характеристика.
- •Манипуляторы
- •Принтеры, плоттеры
- •Вопрос № 14. Внешняя память персонального компьютера: оптические диски (cd-rom, cd-r, cd-rw)
- •Вопрос № 15. Внешняя память персонального компьютера: оптические диски (dvd, Blu- Ray)
- •Вопрос № 16. Внешняя память персонального компьютера: мобильные запоминающие устройства
- •2. Скорость записи/чтения
- •3. Надежность хранения данных
- •4. Дизайн
- •5. Функции защиты информации
- •6. Цена
- •Вопрос №17 Устройства ввода информации (клавиатура, сканер, дигитайзер, манипуляторы).
- •Вопрос №18 Устройства вывода информации (монитор, принтер, плоттер).
- •Монитор
- •Принтеры, плоттеры
- •Вопрос №19 Понятие «информация». Меры информации.
- •Вопрос №20 Представление символьной информации в эвм. Стандартные коды.
- •Вопрос №21 Кодирование графической информации
- •Вопрос №22
- •Вопрос №23 Понятие о системах счисления. Системы счисления, применяемые в эвм.
- •Вопрос №24 Системы счисления: алгоритм перевода целых и дробных чисел из 10-ой системы счисления в 2-ую, 8-ую, 16-ую и обратно.
- •1. Понятие о системах счисления.
- •Вопрос №25 Арифметические операции в позиционных системах счисления.
- •Вопрос №26 Алгебраическое представление двоичных чисел (прямой, обратный и дополнительный код числа).
- •Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
- •Вопрос №28 Арифметические основы построения эвм.
- •1. Представление информации в компьютере
- •2. Системы счисления
- •3. Перевод числа из одной системы счисление в другую
- •4. Арифметические операции в позиционных системах счисления
- •Вопрос №29 Логические основы построения эвм. Аксиомы, тождества и основные законы алгебры логики
- •Логический синтез вычислительных схем
- •Вопрос №30 Законы и соотношения алгебры логики. Формула де Моргана
- •1. Закон одинарных элементов
- •2. Законы отрицания
- •3. Комбинационные законы.
- •4. Правило поглощения (одна переменная поглощает другие)
- •5. Правило склеивания (выполняется только по одной переменной)
- •Закон де моргана
- •Вопрос №31 Логический синтез вычислительных схем.
- •Вопрос №32 Система элементов эвм. Электронные технологии и элементы, применяемые в эвм
- •Система логических элементов
- •Вопрос №33 Триггеры как элементы памяти эвм: основные типы и их реализация на основе логических элементов.
- •Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
- •Вопрос №35 Счетчики эвм: назначение, логика работы.
- •Вопрос №36 Узлы как структурная единица эвм, их типы.
- •2. Оперативная память (озу)
- •3. Постянное запоминающее устройство (пзу)
- •4. Внешняя память
- •5. Устройства ввода
- •6.Устройства вывода.
- •7. Информационная шина (магистраль)
- •8. Некоторые подробности
- •В принципе возможна !!!
- •В принципе возможна !
- •Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
- •Вопрос №38 Шифраторы, дешифраторы: назначение, виды, уго этих узлов.
- •Вопрос №39 Мультиплексоры, демультиплексоры: назначение, виды, уго этих узлов.
- •Вопрос №40 Общие сведения о запоминающих устройствах
- •Классификация зу:
- •Вопрос №41 Многоуровневая организация памяти эвм (мпп, оп, взу, кэш-память)
- •Вопрос №42 Назначение оперативных запоминающих устройств.
- •Вопрос №43 Статические и динамические озу. Виды модулей dram.
- •Вопрос №44 Общая характеристика постоянной памяти. Принцип работы пзу.
- •Вопрос №45 Основные типы пзу
- •Вопрос №46 Назначение и структура микропроцессора. Устройство мп
- •Вопрос №47 Основные блоки микропроцессора
- •Вопрос №48 Выполнение команд в микропроцессоре. Система команд мп, форматы команд, способы адресации.
- •Вопрос №49 Системы risc и cisc.
- •Вопрос №50 Назначение микропрограммного устройства управления.
- •Вопрос №51 Назначение и структура арифметико-логического устройства.
- •Вопрос №52 Классификация алу. Выполнение операций сложения (вычитания) и умножения в алу. Классификация алу:
- •Алгоритмы сложения (вычитания) и умножения в алу
- •Вопрос №53 Обеспечение достоверности информации.
- •Классификация методов контроля достоверности
- •Методы контроля достоверности
- •Вопрос №54 Понятие о кодировании и коде.
- •Вопрос №55 Понятие избыточности кода. Минимальное кодовое расстояние.
- •Вопрос №56 Код с проверкой по четности/нечетности. Коды с постоянным весом. Циклические коды. Код с проверкой по четности/нечетности
- •Коды с постоянным весом
- •Циклические коды
- •Вопрос №57 Корректирующая способность кода.
- •Вопрос №58 Контроль передачи информации с помощью кода Хемминга
- •Вопрос №59 Коды Рида-Соломона. Код Хаффмана. Оптимальное кодирование Шеннона-Фано Коды Рида-Соломона
- •Идея кодов Рида-Соломона
- •Ошибки в символах
- •Преимущество кодирования
- •Архитектура кодирования и декодирования кодов Рида-Соломона
- •Арифметика конечного поля Галуа
- •Алгоритм Хаффмана
- •Адаптивное сжатие
- •Переполнение
- •Масштабирование весов узлов дерева Хаффмана
- •Алгоритм Шеннона — Фано
- •Основные сведения
- •Алгоритм вычисления кодов Шеннона — Фано
- •Вопрос №60 Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ.
В 1946 году трое учёных — Артур Бёркс, Герман Голдстайн и Джон фон Нейман — опубликовали статью «Предварительное рассмотрение логического конструирования электронного вычислительного устройства». В статье обосновывалось использование двоичной системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций — до этого машины хранили данные в десятичном виде), выдвигалась идея использования общей памяти для программы и данных. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «принципы фон Неймана».
Принцип двоичного кодирования.
Для представления данных и команд используется двоичная система счисления.
Принцип однородности памяти.
Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.
Принцип адресуемости памяти.
Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.
Принцип последовательного программного управления.
Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.
Принцип условного перехода.
Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые изменяют последовательность выполнения команд в зависимости от значений данных. (Сам принцип был сформулирован задолго до фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако он логически включен в фоннеймановский набор как дополняющий предыдущий принцип.)
Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.
Рис. 1. Архитектура ЭВМ, построенной на принципах фон Неймана. Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов от процессора к остальными узлам ЭВМ
Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.
Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров “многоярусно” и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ, но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.
В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.
Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название “фон-неймановской архитектуры”. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).
По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.