
- •Вопрос №1 Создание и эволюция эвм. Нулевое поколение.
- •Вопрос №2 Создание и эволюция эвм. Первое поколение (1940-1950-е годы).
- •Вопрос №3 Создание и эволюция эвм. Второе поколение (1950-1960-е годы).
- •Вопрос №4 Создание и эволюция эвм. Третье поколение (1960- сер. 1970 годов).
- •Вопрос №5 Создание и эволюция эвм. Четвёртое поколение (1975-1990).
- •Вопрос №6 Создание и эволюция эвм. Пятое поколение.
- •Вопрос №7 Основные классы современных эвм. Классификация эвм по принципу действия, по назначению.
- •Вопрос №8 Основные классы современных эвм. Классификация эвм по размерам и вычислительной мощности.
- •Вопрос №9 Понятие архитектуры эвм. Структурная схема современного компьютера.
- •Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
- •Вопрос №11 Дополнительные интегральные микросхемы: контроллер прямого доступа, контроллер прерываний, математический сопроцессор.
- •Контроллер прямого доступа к памяти (dmac)
- •Контроллер прерываний
- •Математический сопроцессор
- •Вопрос №12 Функциональные характеристики эвм
- •Вопрос №13 Внешние устройства: классификация, краткая характеристика.
- •Манипуляторы
- •Принтеры, плоттеры
- •Вопрос № 14. Внешняя память персонального компьютера: оптические диски (cd-rom, cd-r, cd-rw)
- •Вопрос № 15. Внешняя память персонального компьютера: оптические диски (dvd, Blu- Ray)
- •Вопрос № 16. Внешняя память персонального компьютера: мобильные запоминающие устройства
- •2. Скорость записи/чтения
- •3. Надежность хранения данных
- •4. Дизайн
- •5. Функции защиты информации
- •6. Цена
- •Вопрос №17 Устройства ввода информации (клавиатура, сканер, дигитайзер, манипуляторы).
- •Вопрос №18 Устройства вывода информации (монитор, принтер, плоттер).
- •Монитор
- •Принтеры, плоттеры
- •Вопрос №19 Понятие «информация». Меры информации.
- •Вопрос №20 Представление символьной информации в эвм. Стандартные коды.
- •Вопрос №21 Кодирование графической информации
- •Вопрос №22
- •Вопрос №23 Понятие о системах счисления. Системы счисления, применяемые в эвм.
- •Вопрос №24 Системы счисления: алгоритм перевода целых и дробных чисел из 10-ой системы счисления в 2-ую, 8-ую, 16-ую и обратно.
- •1. Понятие о системах счисления.
- •Вопрос №25 Арифметические операции в позиционных системах счисления.
- •Вопрос №26 Алгебраическое представление двоичных чисел (прямой, обратный и дополнительный код числа).
- •Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
- •Вопрос №28 Арифметические основы построения эвм.
- •1. Представление информации в компьютере
- •2. Системы счисления
- •3. Перевод числа из одной системы счисление в другую
- •4. Арифметические операции в позиционных системах счисления
- •Вопрос №29 Логические основы построения эвм. Аксиомы, тождества и основные законы алгебры логики
- •Логический синтез вычислительных схем
- •Вопрос №30 Законы и соотношения алгебры логики. Формула де Моргана
- •1. Закон одинарных элементов
- •2. Законы отрицания
- •3. Комбинационные законы.
- •4. Правило поглощения (одна переменная поглощает другие)
- •5. Правило склеивания (выполняется только по одной переменной)
- •Закон де моргана
- •Вопрос №31 Логический синтез вычислительных схем.
- •Вопрос №32 Система элементов эвм. Электронные технологии и элементы, применяемые в эвм
- •Система логических элементов
- •Вопрос №33 Триггеры как элементы памяти эвм: основные типы и их реализация на основе логических элементов.
- •Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
- •Вопрос №35 Счетчики эвм: назначение, логика работы.
- •Вопрос №36 Узлы как структурная единица эвм, их типы.
- •2. Оперативная память (озу)
- •3. Постянное запоминающее устройство (пзу)
- •4. Внешняя память
- •5. Устройства ввода
- •6.Устройства вывода.
- •7. Информационная шина (магистраль)
- •8. Некоторые подробности
- •В принципе возможна !!!
- •В принципе возможна !
- •Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
- •Вопрос №38 Шифраторы, дешифраторы: назначение, виды, уго этих узлов.
- •Вопрос №39 Мультиплексоры, демультиплексоры: назначение, виды, уго этих узлов.
- •Вопрос №40 Общие сведения о запоминающих устройствах
- •Классификация зу:
- •Вопрос №41 Многоуровневая организация памяти эвм (мпп, оп, взу, кэш-память)
- •Вопрос №42 Назначение оперативных запоминающих устройств.
- •Вопрос №43 Статические и динамические озу. Виды модулей dram.
- •Вопрос №44 Общая характеристика постоянной памяти. Принцип работы пзу.
- •Вопрос №45 Основные типы пзу
- •Вопрос №46 Назначение и структура микропроцессора. Устройство мп
- •Вопрос №47 Основные блоки микропроцессора
- •Вопрос №48 Выполнение команд в микропроцессоре. Система команд мп, форматы команд, способы адресации.
- •Вопрос №49 Системы risc и cisc.
- •Вопрос №50 Назначение микропрограммного устройства управления.
- •Вопрос №51 Назначение и структура арифметико-логического устройства.
- •Вопрос №52 Классификация алу. Выполнение операций сложения (вычитания) и умножения в алу. Классификация алу:
- •Алгоритмы сложения (вычитания) и умножения в алу
- •Вопрос №53 Обеспечение достоверности информации.
- •Классификация методов контроля достоверности
- •Методы контроля достоверности
- •Вопрос №54 Понятие о кодировании и коде.
- •Вопрос №55 Понятие избыточности кода. Минимальное кодовое расстояние.
- •Вопрос №56 Код с проверкой по четности/нечетности. Коды с постоянным весом. Циклические коды. Код с проверкой по четности/нечетности
- •Коды с постоянным весом
- •Циклические коды
- •Вопрос №57 Корректирующая способность кода.
- •Вопрос №58 Контроль передачи информации с помощью кода Хемминга
- •Вопрос №59 Коды Рида-Соломона. Код Хаффмана. Оптимальное кодирование Шеннона-Фано Коды Рида-Соломона
- •Идея кодов Рида-Соломона
- •Ошибки в символах
- •Преимущество кодирования
- •Архитектура кодирования и декодирования кодов Рида-Соломона
- •Арифметика конечного поля Галуа
- •Алгоритм Хаффмана
- •Адаптивное сжатие
- •Переполнение
- •Масштабирование весов узлов дерева Хаффмана
- •Алгоритм Шеннона — Фано
- •Основные сведения
- •Алгоритм вычисления кодов Шеннона — Фано
- •Вопрос №60 Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
Адаптивное сжатие
Адаптивное сжатие позволяет не передавать модель сообщения вместе с ним самим и ограничиться одним проходом по сообщению как при кодировании, так и при декодировании.
В создании алгоритма адаптивного кодирования Хаффмана наибольшие сложности возникают при разработке процедуры ОбновитьМодельСимволом(); можно было бы просто вставить внутрь этой процедуры полное построение дерева кодирования Хаффмана. В результате мы получили бы самый медленный в мире алгоритм сжатия, так как построение Н-дерева — это слишком большая работа и производить её при обработке каждого символа неразумно. К счастью, существует способ модифицировать уже существующее Н-дерево так, чтобы отобразить обработку нового символа.
Обновление дерева при считывании очередного символа сообщения состоит из двух операций.
Первая — увеличение веса узлов дерева. Вначале увеличиваем вес листа, соответствующего считанному символу, на единицу. Затем увеличиваем вес родителя, чтобы привести его в соответствие с новыми значениями веса у детей. Этот процесс продолжается до тех пор, пока мы не доберемся до корня дерева. Среднее число операций увеличения веса равно среднему количеству битов, необходимых для того, чтобы закодировать символ.
Вторая операция — перестановка узлов дерева — требуется тогда, когда увеличение веса узла приводит к нарушению свойства упорядоченности, то есть тогда, когда увеличенный вес узла стал больше, чем вес следующего по порядку узла. Если и дальше продолжать обрабатывать увеличение веса, двигаясь к корню дерева, то наше дерево перестанет быть деревом Хаффмана.
Чтобы сохранить упорядоченность дерева кодирования, алгоритм работает следующим образом. Пусть новый увеличенный вес узла равен W+1. Тогда начинаем двигаться по списку в сторону увеличения веса, пока не найдем последний узел с весом W. Переставим текущий и найденный узлы между собой в списке, восстанавливая таким образом порядок в дереве. (При этом родители каждого из узлов тоже изменятся.) На этом операция перестановки заканчивается.
После перестановки операция увеличения веса узлов продолжается дальше. Следующий узел, вес которого будет увеличен алгоритмом, — это новый родитель узла, увеличение веса которого вызвало перестановку.
Переполнение
В процессе работы алгоритма сжатия вес узлов в дереве кодирования Хаффмана неуклонно растет. Первая проблема возникает тогда, когда вес корня дерева начинает превосходить вместимость ячейки, в которой он хранится. Как правило, это 16-битовое значение и, следовательно, не может быть больше, чем 65535. Вторая проблема, заслуживающая ещё большего внимания, может возникнуть значительно раньше, когда размер самого длинного кода Хаффмана превосходит вместимость ячейки, которая используется для того, чтобы передать его в выходной поток. Декодеру все равно, какой длины код он декодирует, поскольку он движется сверху вниз по дереву кодирования, выбирая из входного потока по одному биту. Кодер же должен начинать от листа дерева и двигаться вверх к корню, собирая биты, которые нужно передать. Обычно это происходит с переменной типа «целое», и, когда длина кода Хаффмана превосходит размер типа «целое» в битах, наступает переполнение.
Можно доказать, что максимальную длину код Хаффмана для сообщений с одним и тем же входным алфавитом будет иметь, если частоты символов образует последовательность Фибоначчи. Сообщение с частотами символов, равными числам Фибоначчи до Fib (18), — это отличный способ протестировать работу программы сжатия по Хаффману.