- •Вопрос №1 Создание и эволюция эвм. Нулевое поколение.
- •Вопрос №2 Создание и эволюция эвм. Первое поколение (1940-1950-е годы).
- •Вопрос №3 Создание и эволюция эвм. Второе поколение (1950-1960-е годы).
- •Вопрос №4 Создание и эволюция эвм. Третье поколение (1960- сер. 1970 годов).
- •Вопрос №5 Создание и эволюция эвм. Четвёртое поколение (1975-1990).
- •Вопрос №6 Создание и эволюция эвм. Пятое поколение.
- •Вопрос №7 Основные классы современных эвм. Классификация эвм по принципу действия, по назначению.
- •Вопрос №8 Основные классы современных эвм. Классификация эвм по размерам и вычислительной мощности.
- •Вопрос №9 Понятие архитектуры эвм. Структурная схема современного компьютера.
- •Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
- •Вопрос №11 Дополнительные интегральные микросхемы: контроллер прямого доступа, контроллер прерываний, математический сопроцессор.
- •Контроллер прямого доступа к памяти (dmac)
- •Контроллер прерываний
- •Математический сопроцессор
- •Вопрос №12 Функциональные характеристики эвм
- •Вопрос №13 Внешние устройства: классификация, краткая характеристика.
- •Манипуляторы
- •Принтеры, плоттеры
- •Вопрос № 14. Внешняя память персонального компьютера: оптические диски (cd-rom, cd-r, cd-rw)
- •Вопрос № 15. Внешняя память персонального компьютера: оптические диски (dvd, Blu- Ray)
- •Вопрос № 16. Внешняя память персонального компьютера: мобильные запоминающие устройства
- •2. Скорость записи/чтения
- •3. Надежность хранения данных
- •4. Дизайн
- •5. Функции защиты информации
- •6. Цена
- •Вопрос №17 Устройства ввода информации (клавиатура, сканер, дигитайзер, манипуляторы).
- •Вопрос №18 Устройства вывода информации (монитор, принтер, плоттер).
- •Монитор
- •Принтеры, плоттеры
- •Вопрос №19 Понятие «информация». Меры информации.
- •Вопрос №20 Представление символьной информации в эвм. Стандартные коды.
- •Вопрос №21 Кодирование графической информации
- •Вопрос №22
- •Вопрос №23 Понятие о системах счисления. Системы счисления, применяемые в эвм.
- •Вопрос №24 Системы счисления: алгоритм перевода целых и дробных чисел из 10-ой системы счисления в 2-ую, 8-ую, 16-ую и обратно.
- •1. Понятие о системах счисления.
- •Вопрос №25 Арифметические операции в позиционных системах счисления.
- •Вопрос №26 Алгебраическое представление двоичных чисел (прямой, обратный и дополнительный код числа).
- •Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
- •Вопрос №28 Арифметические основы построения эвм.
- •1. Представление информации в компьютере
- •2. Системы счисления
- •3. Перевод числа из одной системы счисление в другую
- •4. Арифметические операции в позиционных системах счисления
- •Вопрос №29 Логические основы построения эвм. Аксиомы, тождества и основные законы алгебры логики
- •Логический синтез вычислительных схем
- •Вопрос №30 Законы и соотношения алгебры логики. Формула де Моргана
- •1. Закон одинарных элементов
- •2. Законы отрицания
- •3. Комбинационные законы.
- •4. Правило поглощения (одна переменная поглощает другие)
- •5. Правило склеивания (выполняется только по одной переменной)
- •Закон де моргана
- •Вопрос №31 Логический синтез вычислительных схем.
- •Вопрос №32 Система элементов эвм. Электронные технологии и элементы, применяемые в эвм
- •Система логических элементов
- •Вопрос №33 Триггеры как элементы памяти эвм: основные типы и их реализация на основе логических элементов.
- •Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
- •Вопрос №35 Счетчики эвм: назначение, логика работы.
- •Вопрос №36 Узлы как структурная единица эвм, их типы.
- •2. Оперативная память (озу)
- •3. Постянное запоминающее устройство (пзу)
- •4. Внешняя память
- •5. Устройства ввода
- •6.Устройства вывода.
- •7. Информационная шина (магистраль)
- •8. Некоторые подробности
- •В принципе возможна !!!
- •В принципе возможна !
- •Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
- •Вопрос №38 Шифраторы, дешифраторы: назначение, виды, уго этих узлов.
- •Вопрос №39 Мультиплексоры, демультиплексоры: назначение, виды, уго этих узлов.
- •Вопрос №40 Общие сведения о запоминающих устройствах
- •Классификация зу:
- •Вопрос №41 Многоуровневая организация памяти эвм (мпп, оп, взу, кэш-память)
- •Вопрос №42 Назначение оперативных запоминающих устройств.
- •Вопрос №43 Статические и динамические озу. Виды модулей dram.
- •Вопрос №44 Общая характеристика постоянной памяти. Принцип работы пзу.
- •Вопрос №45 Основные типы пзу
- •Вопрос №46 Назначение и структура микропроцессора. Устройство мп
- •Вопрос №47 Основные блоки микропроцессора
- •Вопрос №48 Выполнение команд в микропроцессоре. Система команд мп, форматы команд, способы адресации.
- •Вопрос №49 Системы risc и cisc.
- •Вопрос №50 Назначение микропрограммного устройства управления.
- •Вопрос №51 Назначение и структура арифметико-логического устройства.
- •Вопрос №52 Классификация алу. Выполнение операций сложения (вычитания) и умножения в алу. Классификация алу:
- •Алгоритмы сложения (вычитания) и умножения в алу
- •Вопрос №53 Обеспечение достоверности информации.
- •Классификация методов контроля достоверности
- •Методы контроля достоверности
- •Вопрос №54 Понятие о кодировании и коде.
- •Вопрос №55 Понятие избыточности кода. Минимальное кодовое расстояние.
- •Вопрос №56 Код с проверкой по четности/нечетности. Коды с постоянным весом. Циклические коды. Код с проверкой по четности/нечетности
- •Коды с постоянным весом
- •Циклические коды
- •Вопрос №57 Корректирующая способность кода.
- •Вопрос №58 Контроль передачи информации с помощью кода Хемминга
- •Вопрос №59 Коды Рида-Соломона. Код Хаффмана. Оптимальное кодирование Шеннона-Фано Коды Рида-Соломона
- •Идея кодов Рида-Соломона
- •Ошибки в символах
- •Преимущество кодирования
- •Архитектура кодирования и декодирования кодов Рида-Соломона
- •Арифметика конечного поля Галуа
- •Алгоритм Хаффмана
- •Адаптивное сжатие
- •Переполнение
- •Масштабирование весов узлов дерева Хаффмана
- •Алгоритм Шеннона — Фано
- •Основные сведения
- •Алгоритм вычисления кодов Шеннона — Фано
- •Вопрос №60 Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
В принципе возможна !!!
Но тогда все программы должны храниться в ПЗУ.
При этом принципиально изменяются Функциональные возможности ЭВМ.
ЭВМ из класса УНИВЕРСАЛЬНЫХ перейдет в разряд СПЕЦИАЛИЗИРОВАННЫХ.
На Универсальном компьютере, оснащенном ОЗУ, можно выполнить любую программу.
Для этого ее надо предварительно установить на компьютере(а по сути записать в файлы на винчестере). А дальше программу, записанную на винчестер можно запускать. При этом программа скопируется в ОЗУ и будет выполняться.
Без ОЗУ на ЭВМ могут выполняться только те программы , которые
находятся в ПЗУ. Число этих программ ограничено. Поэтому ограничены и возможности такой ЭВМ. Она не может исполнить ничего , что не заложено в ПЗУ.
Такие компьютеры называются СПЕЦИАЛИЗИРОВАННЫМИ. Например, игровые компьютеры. На них можно играть только в те игры, которые записаны в ПЗУ и только.
Управляющие компьютеры, например компьютер, управляющие топливным насосом на автомобиле. Программы для такого компьютера устанавливаются заранее в ПЗУ.
Их ни заменить, ни добавить. Да это и не нужно
Конфигурацию : ЦП + ПЗУ + имеют ЭВМ , управляющие
техническими объектами , например бортовая ЭВМ самолета.
5) Возможна ли работа ЭВМ без внешней памяти
В принципе возможна !
Но тогда нельзя будет сохранить никакие результаты работы на компьютере( например не сохранить набранный текст, созданный рисунок, написанную программу)
Представьте ситуацию :
К компьютеру нельзя подключить никакой внешней памяти !!!
Вы в течение часа команду за командой ВЫ вводите с клавиатуры
программу обработки в ОЗУ. Затем столько же вводите исходные данные.
Программа запущена. Получены результаты, которые выведены на бумагу.
После выключения питания и программа и данные из оперативной памяти "вытерты".
На следующий день вам необходимо повторить расчет, изменив буквально несколько цифр в исходных данных. И программу , и ВЕСЬ набор исходных данных придётся набивать ЗАНОВО !!!
Так обстоит дело на машинах без внешней памяти.
Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
Сумматоры – это класс КЦУ (Комбинационные цифровые устройства), выполняющих операцию арифметического сложения двух двоичных n-разрядных чисел. Сумматоры бывают полными и неполными. Неполный сумматор или полусумматор - это комбинационное устройство с двумя входами и двумя выходами, выполняющее операцию сложения двух одноразрядных чисел в соответствии с таблицей истинности, где А и В – входные одноразрядные числа, Sп/см. – выход суммы, а Pп/см. – выход переноса в старший разряд:
Входы |
Выходы |
||
А |
В |
Sп/см. |
Pп/см. |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
Поскольку во всех сериях микросхем имеются элементы Исключающее ИЛИ, то структурную схему полусумматора удобно синтезировать на основе именно этого элемента и элемента И (рис. 4.6,а). Условное графическое обозначение полусумматора приведено на рис. 4.6,б.
а) б)
Рис. 4.6.Структурная схема и УГО полусумматора.
Полный одноразрядный сумматор выполняет операцию арифметического сложения двух одноразрядных чисел A и B с учетом переноса из младшего разряда Р-1. Он имеет три входа и два выхода. Работа полного одноразрядного сумматора задается таблицей истинности:
Входы |
Выходы |
|||
A |
B |
Р-1 |
S |
P |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
Структура полного одноразрядного сумматора представлена на рис. 4.7,а, а его УГО – на рис. 4.7,б.
а) б)
Рис. 4.7. Схема и УГО полного одноразрядного сумматора.
Из таблицы истинности полного одноразрядного сумматора очевидно, что на выходе суммы S формируется единица, а на выходе переноса Р – нуль при наличии единицы на одном из входах A, B или Р-1. При наличии единиц на любых двух из трех входов полного сумматора, на выходе S будет нуль, а на выходе P – единица. При наличии на всех трех входах логических единиц, на обоих выходах сумматора присутствуют единицы. При нулях на всех трех входах выходы также принимают нулевые состояния. Структура, реализующая описанное правило и положенная в основу микросхем сумматоров 155 и 555 серий, приведена на рис. 4.8.
Рис. 4.8.Структурная схема одноразрядного полного сумматора, положенная в основу микросхем ТТЛ-типа.
При суммировании многоразрядных двоичных чисел с помощью одноразрядных сумматоров их необходимо соединить в последовательные структуры. Выходы переноса Р микросхем младших разрядов подключаются к входам переноса Р-1 микросхем старших разрядов. Отдельные разряды слагаемых подаются на входы А и В микросхем соответствующих разрядов, а с их выходов S снимаются разряды результата суммирования. Выход переноса P микросхемы самого старшего разряда является выходом переноса результата суммирования всего n-разрядного числа.
Такой способ наращивания разрядности сумматоров путем последовательного объединения нескольких полных сумматоров меньшей разрядности достаточно прост в схемной реализации, но при этом имеет существенный недостаток – низкое быстродействие. Распространение переноса в таких структурах осуществляется последовательно от микросхемы к микросхеме. Этого недостатка лишены сумматоры с параллельным переносом.
Для построения четырехразрядного сумматора с параллельным переносом необходимо полученные ФАЛ для pi каждого разряда реализовать в каком-либо базисе, например И-НЕ. Далее выходные сигналы pi с каждой части такой комбинационной схемы должны быть поданы на соответствующие входы Р-1 полных одноразрядных сумматоров. Пример такой структуры приведен на рис. 4.9.
Из рисунка видно, что даже для четырехразрядного сумматора требуется достаточно сложная комбинационная схема формирования переноса. Поэтому схемы сумматоров с параллельным переносом реализуют обычно для сложения чисел с разрядностью не более четырех бит.
При необходимости реализации быстродействующих сумматоров для сложения двоичных чисел большей разрядности используют два подхода. Первый заключается в использовании полных сумматоров с параллельным переносом в качестве базовых элементов и объединении их в общую последовательную структуру. Сумматоры, реализованные по такой структуре, называются сумматорами с цепным переносом. Подобная структура не может обладать максимальным быстродействием, но при этом является простой в схемотехнической реализации.
Рис. 4.9. Схема четырехразрядного сумматора с параллельным переносом.
Второй подход также основан на использовании набора сумматоров с параллельным переносом. Но их объединение в общую структуру основано на принципе параллельной передачи переноса. В этом случае требуется дополнительная комбинационная схема, реализующая параллельный перенос между параллельными сумматорами. Сумматоры с такой структурой называются параллельно-параллельными. Они имеют максимальное быстродействие, но их реализация требует дополнительных аппаратных затрат.
