
- •Вопрос №1 Создание и эволюция эвм. Нулевое поколение.
- •Вопрос №2 Создание и эволюция эвм. Первое поколение (1940-1950-е годы).
- •Вопрос №3 Создание и эволюция эвм. Второе поколение (1950-1960-е годы).
- •Вопрос №4 Создание и эволюция эвм. Третье поколение (1960- сер. 1970 годов).
- •Вопрос №5 Создание и эволюция эвм. Четвёртое поколение (1975-1990).
- •Вопрос №6 Создание и эволюция эвм. Пятое поколение.
- •Вопрос №7 Основные классы современных эвм. Классификация эвм по принципу действия, по назначению.
- •Вопрос №8 Основные классы современных эвм. Классификация эвм по размерам и вычислительной мощности.
- •Вопрос №9 Понятие архитектуры эвм. Структурная схема современного компьютера.
- •Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
- •Вопрос №11 Дополнительные интегральные микросхемы: контроллер прямого доступа, контроллер прерываний, математический сопроцессор.
- •Контроллер прямого доступа к памяти (dmac)
- •Контроллер прерываний
- •Математический сопроцессор
- •Вопрос №12 Функциональные характеристики эвм
- •Вопрос №13 Внешние устройства: классификация, краткая характеристика.
- •Манипуляторы
- •Принтеры, плоттеры
- •Вопрос № 14. Внешняя память персонального компьютера: оптические диски (cd-rom, cd-r, cd-rw)
- •Вопрос № 15. Внешняя память персонального компьютера: оптические диски (dvd, Blu- Ray)
- •Вопрос № 16. Внешняя память персонального компьютера: мобильные запоминающие устройства
- •2. Скорость записи/чтения
- •3. Надежность хранения данных
- •4. Дизайн
- •5. Функции защиты информации
- •6. Цена
- •Вопрос №17 Устройства ввода информации (клавиатура, сканер, дигитайзер, манипуляторы).
- •Вопрос №18 Устройства вывода информации (монитор, принтер, плоттер).
- •Монитор
- •Принтеры, плоттеры
- •Вопрос №19 Понятие «информация». Меры информации.
- •Вопрос №20 Представление символьной информации в эвм. Стандартные коды.
- •Вопрос №21 Кодирование графической информации
- •Вопрос №22
- •Вопрос №23 Понятие о системах счисления. Системы счисления, применяемые в эвм.
- •Вопрос №24 Системы счисления: алгоритм перевода целых и дробных чисел из 10-ой системы счисления в 2-ую, 8-ую, 16-ую и обратно.
- •1. Понятие о системах счисления.
- •Вопрос №25 Арифметические операции в позиционных системах счисления.
- •Вопрос №26 Алгебраическое представление двоичных чисел (прямой, обратный и дополнительный код числа).
- •Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
- •Вопрос №28 Арифметические основы построения эвм.
- •1. Представление информации в компьютере
- •2. Системы счисления
- •3. Перевод числа из одной системы счисление в другую
- •4. Арифметические операции в позиционных системах счисления
- •Вопрос №29 Логические основы построения эвм. Аксиомы, тождества и основные законы алгебры логики
- •Логический синтез вычислительных схем
- •Вопрос №30 Законы и соотношения алгебры логики. Формула де Моргана
- •1. Закон одинарных элементов
- •2. Законы отрицания
- •3. Комбинационные законы.
- •4. Правило поглощения (одна переменная поглощает другие)
- •5. Правило склеивания (выполняется только по одной переменной)
- •Закон де моргана
- •Вопрос №31 Логический синтез вычислительных схем.
- •Вопрос №32 Система элементов эвм. Электронные технологии и элементы, применяемые в эвм
- •Система логических элементов
- •Вопрос №33 Триггеры как элементы памяти эвм: основные типы и их реализация на основе логических элементов.
- •Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
- •Вопрос №35 Счетчики эвм: назначение, логика работы.
- •Вопрос №36 Узлы как структурная единица эвм, их типы.
- •2. Оперативная память (озу)
- •3. Постянное запоминающее устройство (пзу)
- •4. Внешняя память
- •5. Устройства ввода
- •6.Устройства вывода.
- •7. Информационная шина (магистраль)
- •8. Некоторые подробности
- •В принципе возможна !!!
- •В принципе возможна !
- •Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
- •Вопрос №38 Шифраторы, дешифраторы: назначение, виды, уго этих узлов.
- •Вопрос №39 Мультиплексоры, демультиплексоры: назначение, виды, уго этих узлов.
- •Вопрос №40 Общие сведения о запоминающих устройствах
- •Классификация зу:
- •Вопрос №41 Многоуровневая организация памяти эвм (мпп, оп, взу, кэш-память)
- •Вопрос №42 Назначение оперативных запоминающих устройств.
- •Вопрос №43 Статические и динамические озу. Виды модулей dram.
- •Вопрос №44 Общая характеристика постоянной памяти. Принцип работы пзу.
- •Вопрос №45 Основные типы пзу
- •Вопрос №46 Назначение и структура микропроцессора. Устройство мп
- •Вопрос №47 Основные блоки микропроцессора
- •Вопрос №48 Выполнение команд в микропроцессоре. Система команд мп, форматы команд, способы адресации.
- •Вопрос №49 Системы risc и cisc.
- •Вопрос №50 Назначение микропрограммного устройства управления.
- •Вопрос №51 Назначение и структура арифметико-логического устройства.
- •Вопрос №52 Классификация алу. Выполнение операций сложения (вычитания) и умножения в алу. Классификация алу:
- •Алгоритмы сложения (вычитания) и умножения в алу
- •Вопрос №53 Обеспечение достоверности информации.
- •Классификация методов контроля достоверности
- •Методы контроля достоверности
- •Вопрос №54 Понятие о кодировании и коде.
- •Вопрос №55 Понятие избыточности кода. Минимальное кодовое расстояние.
- •Вопрос №56 Код с проверкой по четности/нечетности. Коды с постоянным весом. Циклические коды. Код с проверкой по четности/нечетности
- •Коды с постоянным весом
- •Циклические коды
- •Вопрос №57 Корректирующая способность кода.
- •Вопрос №58 Контроль передачи информации с помощью кода Хемминга
- •Вопрос №59 Коды Рида-Соломона. Код Хаффмана. Оптимальное кодирование Шеннона-Фано Коды Рида-Соломона
- •Идея кодов Рида-Соломона
- •Ошибки в символах
- •Преимущество кодирования
- •Архитектура кодирования и декодирования кодов Рида-Соломона
- •Арифметика конечного поля Галуа
- •Алгоритм Хаффмана
- •Адаптивное сжатие
- •Переполнение
- •Масштабирование весов узлов дерева Хаффмана
- •Алгоритм Шеннона — Фано
- •Основные сведения
- •Алгоритм вычисления кодов Шеннона — Фано
- •Вопрос №60 Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
Регистром называется устройство, осуществляющее прием, хранение преобразование и выдачу чисел в двоичном коде. Регистры наряду со счетчиками и запоминающими устройствами являются наиболее распространенными устройствами цифровой техники. При сравнительной простоте регистры обладают большими функциональными возможностями. Они используются в качестве управляющих и запоминающих устройств, генераторов и преобразователей кодов, счетчиков, делителей частоты, узлов временной задержки.
Элементами структуры регистров являются триггеры D- или JK- типа с динамическим или статическим управлением. Одиночный триггер может запоминать (регистрировать) один разряд (бит) двоичной информации. Такой триггер можно считать одноразрядным регистром. Занесение информации в регистр называют операцией ввода или записи. Выдача информации к внешним устройствам характеризует операцию вывода или считывания. Запись информации в регистр не требует его предварительного обнуления.
Все регистры в зависимости от функциональных свойств подразделяются на две категории – накопительные (регистры памяти, хранения) и сдвигающие. В свою очередь, сдвигающие регистры делятся по способу ввода и вывода информации на параллельные и последовательно-параллельные и комбинированные, по направлению передачи (сдвига) информации – на однонаправленные и реверсивные.
Регистры выполняют ряд микроопераций2 над словами:
1. Прием слова в регистр в прямом и обратном коде, данные хранятся в регистре пока не появится команда на их смену.
2. Выдача слова из регистра в прямом и обратном коде.
3. Выполнение поразрядных логических операций над несколькими словами.
4. Сдвиг кода вправо или влево на требуемое число разрядов, преобразование параллельного кода в последовательный и наоборот.
Параллельный регистр. В параллельных регистрах операции записи и считывания информации осуществляются во всех разрядах одновременно. Информация поступает в виде параллельного кода, т.е. все разряда одновременно по n (n=3) проводам. Таким образом, информация в параллельном регистре хранится в параллельном коде, поэтому параллельный регистр называют регистром памяти.
Последовательный регистр. В последовательных регистрах запись кода числа начинается с первого разряда путем последовательного продвижения информации с помощью тактовых импульсов. Записываемое число поступает по одному входу в виде последовательного кода, т.е. значение разрядов передаются последовательно тому, как мы прочитываем многоразрядное число, например: “тысяча триста сорок два” - 1342. В общем виде: n-разрядный регистр запоминает n-разрядное число за n-тактовых импульсов. Поступивший на вход последовательный код преобразуется в регистре в параллельный код: число может быть считано с выходов триггеров. С поступлением каждого тактового импульса записанная информация сдвигается в регистре (движение от входа к выходу), поэтому последовательный регистр называют регистром сдвига.
Сдвиг информации на один разряд равнозначен умножению кода на 2. Например, записано число 101 (в десятичном коде 5), сдвигаем его на один разряд влево и получаем 1010 (десятичном коде 10). Информация, записанная в последовательном регистре, может быть считана с выхода его старшего разряда в виде последовательного кода: если после записи в регистр числа вновь подать тактовые импульсы, число поразрядно будет прочитываться на выходе старшего разряда и оттуда может быть передано к другим считывающим цепям.
Для хранения и обработки информации в микро-ЭВМ широко используются сдвиговые регистры. Сдвиговые регистры обычно реализуются с применением RS-, JK- или D – триггеров, и различия между ними связаны главным образом с методом обработки входных и выходных данных.