- •Вопрос №1 Создание и эволюция эвм. Нулевое поколение.
- •Вопрос №2 Создание и эволюция эвм. Первое поколение (1940-1950-е годы).
- •Вопрос №3 Создание и эволюция эвм. Второе поколение (1950-1960-е годы).
- •Вопрос №4 Создание и эволюция эвм. Третье поколение (1960- сер. 1970 годов).
- •Вопрос №5 Создание и эволюция эвм. Четвёртое поколение (1975-1990).
- •Вопрос №6 Создание и эволюция эвм. Пятое поколение.
- •Вопрос №7 Основные классы современных эвм. Классификация эвм по принципу действия, по назначению.
- •Вопрос №8 Основные классы современных эвм. Классификация эвм по размерам и вычислительной мощности.
- •Вопрос №9 Понятие архитектуры эвм. Структурная схема современного компьютера.
- •Вопрос №10 Классическая архитектура эвм и принципы фон Неймана.
- •Вопрос №11 Дополнительные интегральные микросхемы: контроллер прямого доступа, контроллер прерываний, математический сопроцессор.
- •Контроллер прямого доступа к памяти (dmac)
- •Контроллер прерываний
- •Математический сопроцессор
- •Вопрос №12 Функциональные характеристики эвм
- •Вопрос №13 Внешние устройства: классификация, краткая характеристика.
- •Манипуляторы
- •Принтеры, плоттеры
- •Вопрос № 14. Внешняя память персонального компьютера: оптические диски (cd-rom, cd-r, cd-rw)
- •Вопрос № 15. Внешняя память персонального компьютера: оптические диски (dvd, Blu- Ray)
- •Вопрос № 16. Внешняя память персонального компьютера: мобильные запоминающие устройства
- •2. Скорость записи/чтения
- •3. Надежность хранения данных
- •4. Дизайн
- •5. Функции защиты информации
- •6. Цена
- •Вопрос №17 Устройства ввода информации (клавиатура, сканер, дигитайзер, манипуляторы).
- •Вопрос №18 Устройства вывода информации (монитор, принтер, плоттер).
- •Монитор
- •Принтеры, плоттеры
- •Вопрос №19 Понятие «информация». Меры информации.
- •Вопрос №20 Представление символьной информации в эвм. Стандартные коды.
- •Вопрос №21 Кодирование графической информации
- •Вопрос №22
- •Вопрос №23 Понятие о системах счисления. Системы счисления, применяемые в эвм.
- •Вопрос №24 Системы счисления: алгоритм перевода целых и дробных чисел из 10-ой системы счисления в 2-ую, 8-ую, 16-ую и обратно.
- •1. Понятие о системах счисления.
- •Вопрос №25 Арифметические операции в позиционных системах счисления.
- •Вопрос №26 Алгебраическое представление двоичных чисел (прямой, обратный и дополнительный код числа).
- •Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
- •Вопрос №28 Арифметические основы построения эвм.
- •1. Представление информации в компьютере
- •2. Системы счисления
- •3. Перевод числа из одной системы счисление в другую
- •4. Арифметические операции в позиционных системах счисления
- •Вопрос №29 Логические основы построения эвм. Аксиомы, тождества и основные законы алгебры логики
- •Логический синтез вычислительных схем
- •Вопрос №30 Законы и соотношения алгебры логики. Формула де Моргана
- •1. Закон одинарных элементов
- •2. Законы отрицания
- •3. Комбинационные законы.
- •4. Правило поглощения (одна переменная поглощает другие)
- •5. Правило склеивания (выполняется только по одной переменной)
- •Закон де моргана
- •Вопрос №31 Логический синтез вычислительных схем.
- •Вопрос №32 Система элементов эвм. Электронные технологии и элементы, применяемые в эвм
- •Система логических элементов
- •Вопрос №33 Триггеры как элементы памяти эвм: основные типы и их реализация на основе логических элементов.
- •Вопрос №34 Регистры эвм: назначение, классификация и схемная реализация.
- •Вопрос №35 Счетчики эвм: назначение, логика работы.
- •Вопрос №36 Узлы как структурная единица эвм, их типы.
- •2. Оперативная память (озу)
- •3. Постянное запоминающее устройство (пзу)
- •4. Внешняя память
- •5. Устройства ввода
- •6.Устройства вывода.
- •7. Информационная шина (магистраль)
- •8. Некоторые подробности
- •В принципе возможна !!!
- •В принципе возможна !
- •Вопрос №37 Назначение сумматора. Последовательные и параллельные сумматоры: принципы их функционирования.
- •Вопрос №38 Шифраторы, дешифраторы: назначение, виды, уго этих узлов.
- •Вопрос №39 Мультиплексоры, демультиплексоры: назначение, виды, уго этих узлов.
- •Вопрос №40 Общие сведения о запоминающих устройствах
- •Классификация зу:
- •Вопрос №41 Многоуровневая организация памяти эвм (мпп, оп, взу, кэш-память)
- •Вопрос №42 Назначение оперативных запоминающих устройств.
- •Вопрос №43 Статические и динамические озу. Виды модулей dram.
- •Вопрос №44 Общая характеристика постоянной памяти. Принцип работы пзу.
- •Вопрос №45 Основные типы пзу
- •Вопрос №46 Назначение и структура микропроцессора. Устройство мп
- •Вопрос №47 Основные блоки микропроцессора
- •Вопрос №48 Выполнение команд в микропроцессоре. Система команд мп, форматы команд, способы адресации.
- •Вопрос №49 Системы risc и cisc.
- •Вопрос №50 Назначение микропрограммного устройства управления.
- •Вопрос №51 Назначение и структура арифметико-логического устройства.
- •Вопрос №52 Классификация алу. Выполнение операций сложения (вычитания) и умножения в алу. Классификация алу:
- •Алгоритмы сложения (вычитания) и умножения в алу
- •Вопрос №53 Обеспечение достоверности информации.
- •Классификация методов контроля достоверности
- •Методы контроля достоверности
- •Вопрос №54 Понятие о кодировании и коде.
- •Вопрос №55 Понятие избыточности кода. Минимальное кодовое расстояние.
- •Вопрос №56 Код с проверкой по четности/нечетности. Коды с постоянным весом. Циклические коды. Код с проверкой по четности/нечетности
- •Коды с постоянным весом
- •Циклические коды
- •Вопрос №57 Корректирующая способность кода.
- •Вопрос №58 Контроль передачи информации с помощью кода Хемминга
- •Вопрос №59 Коды Рида-Соломона. Код Хаффмана. Оптимальное кодирование Шеннона-Фано Коды Рида-Соломона
- •Идея кодов Рида-Соломона
- •Ошибки в символах
- •Преимущество кодирования
- •Архитектура кодирования и декодирования кодов Рида-Соломона
- •Арифметика конечного поля Галуа
- •Алгоритм Хаффмана
- •Адаптивное сжатие
- •Переполнение
- •Масштабирование весов узлов дерева Хаффмана
- •Алгоритм Шеннона — Фано
- •Основные сведения
- •Алгоритм вычисления кодов Шеннона — Фано
- •Вопрос №60 Современное состояние и перспективы развития элементной базы и средств вычислительной техники.
Вопрос №27 Представление чисел в форме с фиксированной и плавающей запятой. Арифметические операции над числами с фиксированной и плавающей запятой.
Как мы уже знаем, применяются два основных способа представления чисел - с фиксированной и плавающей запятой. Большинство универсальных ЭВМ работает с числами, представленными с плавающей запятой, а большинство специализированных - с фиксированной запятой.
Однако целый ряд машин работает с числами в этих двух форматах.
В общем виде способ представления чисел сильно влияет на характер программирования. Так, программирование для ЭВМ, работающих в системе с фиксированной запятой, значительно усложняется, поскольку помимо алгоритмических трудностей этот процесс требует ещё отслеживания положения запятой.
Фиксированная запятая
Оговоримся, что разрядная сетка машины имеет постоянное число разрядов - n.
При представлении чисел с фиксированной запятой считают, что запятая всегда находится перед старшим разрядом, а все числа, которые участвуют в вычислениях, считаются по абсолютной величине меньше единицы:
|X| < 1
Введём две характеристики чисел: диапазон изменения и точность представления.
Диапазон изменения характеризуется теми пределами, в которых могут находиться числа, с которыми оперирует машина.
Отличное от нуля самое малое число:
Таким образом, диапазон чисел, с которыми работает ЭВМ, есть:
|X|min
|X|
|X|max
2-n |X| 1 - 2-n
Иными словами, числа, которые выходят за диапазон изменения, в ЭВМ не могут быть представлены точно. Если
|X| < |X|min = 2-n,
то такое число воспринимается как нуль.
Если:
|X| > |X|max = 1- 2-n,
то такое число воспринимается как бесконечно большое. Этим двум случаям соответствуют понятия машинного нуля и машинной бесконечности.
При оптимальном округлении абсолютная ошибка:
|ΔX| 0,5*2-n
Минимальная относительная ошибка:
|ΔX| 0,5*2-n
|
x|min
= _______ = -__________
2-(n+1)
|X|max 1-2-n
так как 1-2-n 1 при большом "n"
Максимальная относительная ошибка:
|ΔX| 0,5*2-n
| X|max = _____ = _____________ = 0,5
|X|min 2-n
Ошибка представления числа зависит от величины самого числа и способа округления:
2-(n+1) | X| 0,5
Заметим, что для малых чисел ошибка может достигать большой величины.
Плавающая запятая
В ЭВМ с плавающей запятой число представляется в виде:
X = ± Mx * q±p,
где: Mx - мантисса числа;
q - основание системы счисления;
p - порядок.
Разрядная сетка машины принимает следующий вид:
Это лишь условное изображение основных слогов в числе. Заметим, что в реальной ЭВМ может быть принят любой другой порядок расположения.
Пусть "m" разрядов отведено под изображение мантиссы, а "k" разрядов под изображение порядка. Тогда для двоичной системы и нормализованного вида числа:
q = 2;
0,1 Mx < 1 - нормализованная мантисса.
То есть диапазон чисел:
Абсолютная ошибка представления числа в ЭВМ с плавающей запятой равна:
|ΔX| 0,5*2-m
Так как
2-1 |Mx| 1-2-m,
то минимальная относительная ошибка:
|ΔX|min = (0,5*2-m) / (1 - 2-m) 2-(m+1), при m - большом,
а максимальная относительная ошибка:
|ΔX|max =(0,5*2-m) / (2-1) = 2-m
Видно, что относительная ошибка в ЭВМ с плавающей запятой не зависит от порядка числа. При этом точность представления больших и малых чисел изменяется незначительно.
Теоретически "плавающая запятая" имеет преимущества перед "фиксированной". Но соответствующее устройство получается намного сложнее. К тому же специфика выполнения операций с плавающей запятой требует большего числа микроопераций, что приводит к снижению быстродействия ЭВМ. Однако "плавающая запятая" снимает с программиста обязанность отслеживать положение запятой в вычислениях и значительно упрощает сам процесс программирования вычислительных задач.
Выполнение арифметических операций над числами, представленными с фиксированной запятой.
Основной особенностью различных методов выполнения арифметических операций является то, что любая операция (сложение, вычитание, умножение, деление и др.) сводится к некоторой последовательности микроопераций, таких как:
сложение
сдвиг
передача
преобразование кодов.
Сложение выполняется по правилам сложения чисел в позиционных системах счисления.
То есть эта операция выполняется поразрядно, а возникающий в младших разрядах перенос направляется в старшие разряды.
Пример:
0,101101 1-ое слагаемое
+0,000101 2-ое слагаемое
________
0,101000 сумма
0,00101 перенос
________
0,100010 сумма
0,01 перенос
________
0,110010 сумма
Операции сложения производятся одновременно над всеми разрядами двух слагаемых и продолжаются до тех пор, пока возникают переносы. Возникающие переносы приводят к продолжению операции. Это одна из особенностей позиционных систем. Видим, что собственно операция определения частичной суммы слагаемых выполняется в один приём, а возникающие переносы распространяются на всё более старшие разряды.
Сдвиг
Различают два вида микрооперации сдвига:
логический сдвиг;
арифметический сдвиг;
Логический сдвиг приводит к смещению всех разрядов числа, включая и знак, влево или вправо. При этом освобождающиеся разряды заполняются нулями или единицами.
Арифметический сдвиг выполняется над частью числа, часть сдвинутых разрядов теряется. (Очевидно, знаковый разряд должен исключаться из рассмотрения).
Передача.
Эта микрооперация предполагает, что некоторый код (число) записывается в соответствующее устройство и вытесняет тот код, который там находился до передачи.
Различают два вида передач:
запись (с разрушением ранее записанной информации);
чтение (без разрушения).
Преобразование.
Функция,
выполняемая над передаваемыми числами,
называется преобразованием. Чаще других
в арифметических основах рассматривают
инвертирование кода. Это поразрядная
микрооперация yi
= xi
1
(1
i
n),
которая выполняется над всеми разрядами
одновременно.
