
- •Автоматическое регулирование технологических процессов
- •Математическое описание объектов регулирования [1 4]
- •Основные характеристики и свойства объектов регулирования
- •Методы математического описания объектов регулирования
- •Получение и аппроксимация временных характеристик объектов регулирования
- •2. Промышленные регуляторы аср [1 4]
- •2.1. Функциональная схема автоматического регулятора
- •2.2. Классификация регуляторов по потреблению энергии внешнего источника
- •2.3. Классификация регуляторов по закону регулирования
- •Уравнение динамики п- регулятора
- •3. Расчёт настроек регуляторов в линейных непрерывных системах [14]
- •3.1. Качество регулирования
- •3.2. Типовые оптимальные процессы
- •3.3. Упрощенные формулы для расчёта настроек регуляторов
- •Расчет настроек регуляторов методом расширенных частотных характеристик (рчх)
- •Выбор оптимальных настроек регулятора на лрз
- •Выбор оптимальных настроек пи-регулятора
- •Выбор оптимальных настроек пд-регулятора
- •Выбор оптимальных настроек пид-регулятора
- •Построение переходных процессов в замкнутых аср методом Акульшина
- •Выражение (63) справедливо в пределах
- •4. Анализ аср с релейными регуляторами [4]
- •4.1. Анализ аср с двухпозиционным релейным регулятором
- •4.2. Анализ релейных аср частотно-амплитудным методом Гольдфарба
- •5. Аср с усложнённой структурой [1÷4]
- •5.1. Каскадные аср
- •5.2. Аср со скоростным импульсом от промежуточной регулируемой величины
- •5.3. Системы с компенсацией возмущения. Комбинированные аср
- •Системы связанного регулирования.
- •Регулирование объектов с чистым запаздыванием. Упредите ль Смита
- •6. Расчет настроек цифровых регуляторов [2 5]
- •6.1. Динамические характеристики цифровых систем регулирования Конечно-разностное уравнение
- •Для упрощения записи обозначим
- •Временные характеристики
- •Частотные характеристики дискретных систем
- •Периодична с периодом .
- •6.2. Структурная схема цифровой системы регулирования (рис. 61)
- •6.3. Нахождение передаточной функции приведенной непрерывной части
- •Тогда (154) с учетом (153) и (155) принимает вид
- •6.4. Дискретные аналоги типовых законов регулирования
- •Уравнение:
- •Модификации цифровых регуляторов
- •6.5. Расчет настроек цифровых регуляторов
- •7. Анализ и синтез цифровых аср при случайных воздействиях
- •7.1. Основные характеристики случайных процессов [8, 9, 7]
- •7.2. Определение дисперсии выходной величины в цифровой аср [10, 11]
- •7.3. Синтез регулятора с минимальной дисперсией [5]
- •8. Синтез многомерных дискретных регуляторов в пространстве состояния [12, 13, 14]
- •8.1. Формулировка задачи оптимального управления
- •8.2. Уравнения состояния и измерения
- •Вводя обозначения
- •8.3. Синтез дискретного п–регулятора состояния
- •8.4. Синтез дискретного пи–регулятора состояния – выхода
- •8.5. Синтез дискретного наблюдателя состояния
- •9. Многомерные дискретные аср с прогнозом регулируемых переменных
- •9.1. Структурная схема системы с прогнозом регулируемых переменных и его минимизацией [15]
- •9.2. Прогнозирование рассогласования [15, 16]
- •9.3. Минимизация прогноза рассогласования [15]
- •9.4. Сведение задачи квадратичного программирования к задаче о линейной дополнительности [17, 14]
- •9.5. Решение задачи о линейной дополнительности методом Лемке
- •10. Автоматизация типовых технологических процессов [3, 18]
- •Регулирование основных параметров технологических процессов
- •Из уравнения (315) можно найти коэффициент расхода
- •Регулирование давления
- •Согласно уравнениям (313), (314) объёмный расход газа равен
- •Регулирование уровня жидкости
- •Регулирование температуры
- •Типовые схемы автоматизации технологических процессов Автоматизация насосов и компрессоров
- •Библиографический список
- •Содержание
10. Автоматизация типовых технологических процессов [3, 18]
Регулирование основных параметров технологических процессов
Регулирование расхода жидкости или газа
Объектом регулирования является трубопровод. Скорость жидкости в трубопроводе определяется уравнением Бернулли:
(313)
,
где v – скорость жидкости,
с<1 – коэффициент расхода,
g – ускорение силы тяжести,
g, r=g/g – соответственно удельный вес и плотность жидкости,
Δp – перепад давления на трубопроводе.
(314)
Q=vf
Уравнение статики трубопровода (баланс движущей силы потока Fдв и силы сопротивления трубопровода Fсопр):
Fдв = Fсопр ,
или с учётом (313), (314)
(315)
.
Из уравнения (315) можно найти коэффициент расхода
.
Если приложенная к потоку сила Fдв превышает гидродинамическое сопротивление трубопровода, возникает ускорение потока dv/dt и, вместо уравнения статики, получаем уравнение
,
или с учётом (315), (314)
,
где m=Vρ – масса жидкости в трубопроводе,
V=Lf – объём трубопровода,
L – длина трубопровода.
Подставляя в уравнение динамики выражение для массы, имеем:
.
Наконец, приводя последнее уравнение к стандартному виду для инерционного звена первого порядка:
(T – постоянная времени, k – статический коэффициент передачи по каналу Δp→Q), окончательно получаем:
.
Как видим из выражения для постоянной времени, инерционность трубопровода пропорциональна его длине, площади сечения и обратно пропорциональна расходу жидкости.
Например, для L=60 м, диаметра трубопровода D=28 мм (f=0,00062 м2), Q=40 л/мин (0,00066 м3/с), Δр=1,3 кгс/см2, γ=1000 кгс/м3, g=9,8 м/с2 постоянная времени трубопровода Т=0,5 с.
На практике находят применение три способа регулирования расхода.
1) Дросселирование потока на линии нагнетания (рис. 83)
Рис. 83.
Н
а
рис. 83 обозначено:
- насос (компрессор),
-
рабочий орган с исполнительным механизмом,
FC - регулятор (С) расхода (F).
Данный способ является наиболее простым. Поток дросселируется именно на линии нагнетания, т.к. дросселирование потока на линии всасывания может привести к кавитации (срыву) потока и разрушению насоса.
2) Байпасирование – перепуск части потока из основного трубопровода в обводную линию (рис. 84).
Этот способ применяется для насосов с большим внутренним сопротивлением, производительность которых мало зависит от проходного сечения линии нагнетания (например, поршневых, шестерёнчатых насосов). Для таких насосов закрытие регулирующего органа на линии нагнетания приводит к повышению давления в трубопроводе, что может привести к его разрыву.
3). Изменение напора в трубопроводе изменением числа оборотов вала насоса (рис. 85).
Рис. 85.
Здесь
- регулируемый электропривод скорости
вращения вала насоса.
Данный способ позволяет исключить потери давления на регулирующем органе. Однако этот способ технически более сложен, т.к. требует применения регулируемого электропривода двигателя насоса.