
- •Автоматическое регулирование технологических процессов
- •Математическое описание объектов регулирования [1 4]
- •Основные характеристики и свойства объектов регулирования
- •Методы математического описания объектов регулирования
- •Получение и аппроксимация временных характеристик объектов регулирования
- •2. Промышленные регуляторы аср [1 4]
- •2.1. Функциональная схема автоматического регулятора
- •2.2. Классификация регуляторов по потреблению энергии внешнего источника
- •2.3. Классификация регуляторов по закону регулирования
- •Уравнение динамики п- регулятора
- •3. Расчёт настроек регуляторов в линейных непрерывных системах [14]
- •3.1. Качество регулирования
- •3.2. Типовые оптимальные процессы
- •3.3. Упрощенные формулы для расчёта настроек регуляторов
- •Расчет настроек регуляторов методом расширенных частотных характеристик (рчх)
- •Выбор оптимальных настроек регулятора на лрз
- •Выбор оптимальных настроек пи-регулятора
- •Выбор оптимальных настроек пд-регулятора
- •Выбор оптимальных настроек пид-регулятора
- •Построение переходных процессов в замкнутых аср методом Акульшина
- •Выражение (63) справедливо в пределах
- •4. Анализ аср с релейными регуляторами [4]
- •4.1. Анализ аср с двухпозиционным релейным регулятором
- •4.2. Анализ релейных аср частотно-амплитудным методом Гольдфарба
- •5. Аср с усложнённой структурой [1÷4]
- •5.1. Каскадные аср
- •5.2. Аср со скоростным импульсом от промежуточной регулируемой величины
- •5.3. Системы с компенсацией возмущения. Комбинированные аср
- •Системы связанного регулирования.
- •Регулирование объектов с чистым запаздыванием. Упредите ль Смита
- •6. Расчет настроек цифровых регуляторов [2 5]
- •6.1. Динамические характеристики цифровых систем регулирования Конечно-разностное уравнение
- •Для упрощения записи обозначим
- •Временные характеристики
- •Частотные характеристики дискретных систем
- •Периодична с периодом .
- •6.2. Структурная схема цифровой системы регулирования (рис. 61)
- •6.3. Нахождение передаточной функции приведенной непрерывной части
- •Тогда (154) с учетом (153) и (155) принимает вид
- •6.4. Дискретные аналоги типовых законов регулирования
- •Уравнение:
- •Модификации цифровых регуляторов
- •6.5. Расчет настроек цифровых регуляторов
- •7. Анализ и синтез цифровых аср при случайных воздействиях
- •7.1. Основные характеристики случайных процессов [8, 9, 7]
- •7.2. Определение дисперсии выходной величины в цифровой аср [10, 11]
- •7.3. Синтез регулятора с минимальной дисперсией [5]
- •8. Синтез многомерных дискретных регуляторов в пространстве состояния [12, 13, 14]
- •8.1. Формулировка задачи оптимального управления
- •8.2. Уравнения состояния и измерения
- •Вводя обозначения
- •8.3. Синтез дискретного п–регулятора состояния
- •8.4. Синтез дискретного пи–регулятора состояния – выхода
- •8.5. Синтез дискретного наблюдателя состояния
- •9. Многомерные дискретные аср с прогнозом регулируемых переменных
- •9.1. Структурная схема системы с прогнозом регулируемых переменных и его минимизацией [15]
- •9.2. Прогнозирование рассогласования [15, 16]
- •9.3. Минимизация прогноза рассогласования [15]
- •9.4. Сведение задачи квадратичного программирования к задаче о линейной дополнительности [17, 14]
- •9.5. Решение задачи о линейной дополнительности методом Лемке
- •10. Автоматизация типовых технологических процессов [3, 18]
- •Регулирование основных параметров технологических процессов
- •Из уравнения (315) можно найти коэффициент расхода
- •Регулирование давления
- •Согласно уравнениям (313), (314) объёмный расход газа равен
- •Регулирование уровня жидкости
- •Регулирование температуры
- •Типовые схемы автоматизации технологических процессов Автоматизация насосов и компрессоров
- •Библиографический список
- •Содержание
6.2. Структурная схема цифровой системы регулирования (рис. 61)
Рис. 61.
На рис. 61 обозначено:
Wоб(p) – передаточная функция объекта регулирования. Объекты регулирования, как правило, являются непрерывными звеньями, на входе и выходе которых действуют непрерывные во времени сигналы,
– идеальный
амплитудно-импульсный модулятор
(импульсный элемент),
Wрег(z) – передаточная функция дискретного регулятора,
Wф(p) – передаточная функция фиксирующего элемента (экстраполятора), служащего для преобразования выходной последовательности импульсов регулятора в непрерывный сигнал на входе объекта. Чаще всего используются простейшие экстраполяторы, запоминающие мгновенные значения выходного сигнала дискретного регулятора на весь период квантования, в результате чего последовательность импульсов преобразуется в непрерывную ступенчатую функцию. Такие экстраполяторы называются экстраполяторами нулевого порядка (ступенчатыми экстраполяторами).
Реакция экстраполятора нулевого порядка на мгновенный импульс представляет прямоугольный импульс длительностью T (рис. 62) и по определению является весовой функцией фиксатора, которую можно представить в виде двух смещенных ступенчатых функций:
wф(t)=1[t] – 1[t – T] (152)
Рис. 62.
Из теории управления известно, что передаточная функция звена есть преобразование Лапласа его весовой функции, следовательно, передаточную функцию фиксатора можно найти, определив преобразование Лапласа весовой функции (152):
(153)
В исходной структурной схеме цифровой системы на рис. 61 действуют как непрерывные (на входе и выходе объекта регулирования), так и дискретные (на входе и выходе регулятора) сигналы. Т.е. исходная схема является дискретно-непрерывной. Это создает неудобства при ее анализе. Поэтому исходную структурную схему преобразуют к эквивалентной непрерывной или эквивалентной дискретной. Поскольку преобразование дискретно-непрерывной системы к эквивалентной непрерывной возможно только при малых значениях периода квантования, рассмотрим преобразование дискретно-непрерывной системы к эквивалентной дискретной. С этой целью вводится понятие приведенной непрерывной части (ПНЧ), к которой относят объект регулирования и экстраполятор:
WПНЧ(p)=Wф(p)Wоб(p) (154)
Введение ПНЧ позволяет перейти от непрерывного сигнала на входе объекта регулирования к дискретному сигналу на входе ПНЧ. Считая условно выходной сигнал ПНЧ или, что то же, объекта регулирования также дискретным, можем преобразовать исходную структурную схему цифровой системы к виду (рис. 63)
Рис. 63.
В этой структурной схеме действуют только дискретные сигналы. Таким образом, структурная схема цифровой АСР отличается от структурной схемы непрерывной АСР тем, что вместо непрерывных передаточных функций используются дискретные передаточные функции и вместо объекта регулирования используется ПНЧ.
Если нас интересует поведение регулируемой переменной внутри периода квантования, в структурную схему следует дополнительно ввести передаточную функцию ПНЧ для смещенной регулируемой величины WПНЧ(z,). Для ее нахождения используется Z-преобразование смещенной решетчатой функции на выходе ПНЧ Y(z,).