
- •Автоматическое регулирование технологических процессов
- •Математическое описание объектов регулирования [1 4]
- •Основные характеристики и свойства объектов регулирования
- •Методы математического описания объектов регулирования
- •Получение и аппроксимация временных характеристик объектов регулирования
- •2. Промышленные регуляторы аср [1 4]
- •2.1. Функциональная схема автоматического регулятора
- •2.2. Классификация регуляторов по потреблению энергии внешнего источника
- •2.3. Классификация регуляторов по закону регулирования
- •Уравнение динамики п- регулятора
- •3. Расчёт настроек регуляторов в линейных непрерывных системах [14]
- •3.1. Качество регулирования
- •3.2. Типовые оптимальные процессы
- •3.3. Упрощенные формулы для расчёта настроек регуляторов
- •Расчет настроек регуляторов методом расширенных частотных характеристик (рчх)
- •Выбор оптимальных настроек регулятора на лрз
- •Выбор оптимальных настроек пи-регулятора
- •Выбор оптимальных настроек пд-регулятора
- •Выбор оптимальных настроек пид-регулятора
- •Построение переходных процессов в замкнутых аср методом Акульшина
- •Выражение (63) справедливо в пределах
- •4. Анализ аср с релейными регуляторами [4]
- •4.1. Анализ аср с двухпозиционным релейным регулятором
- •4.2. Анализ релейных аср частотно-амплитудным методом Гольдфарба
- •5. Аср с усложнённой структурой [1÷4]
- •5.1. Каскадные аср
- •5.2. Аср со скоростным импульсом от промежуточной регулируемой величины
- •5.3. Системы с компенсацией возмущения. Комбинированные аср
- •Системы связанного регулирования.
- •Регулирование объектов с чистым запаздыванием. Упредите ль Смита
- •6. Расчет настроек цифровых регуляторов [2 5]
- •6.1. Динамические характеристики цифровых систем регулирования Конечно-разностное уравнение
- •Для упрощения записи обозначим
- •Временные характеристики
- •Частотные характеристики дискретных систем
- •Периодична с периодом .
- •6.2. Структурная схема цифровой системы регулирования (рис. 61)
- •6.3. Нахождение передаточной функции приведенной непрерывной части
- •Тогда (154) с учетом (153) и (155) принимает вид
- •6.4. Дискретные аналоги типовых законов регулирования
- •Уравнение:
- •Модификации цифровых регуляторов
- •6.5. Расчет настроек цифровых регуляторов
- •7. Анализ и синтез цифровых аср при случайных воздействиях
- •7.1. Основные характеристики случайных процессов [8, 9, 7]
- •7.2. Определение дисперсии выходной величины в цифровой аср [10, 11]
- •7.3. Синтез регулятора с минимальной дисперсией [5]
- •8. Синтез многомерных дискретных регуляторов в пространстве состояния [12, 13, 14]
- •8.1. Формулировка задачи оптимального управления
- •8.2. Уравнения состояния и измерения
- •Вводя обозначения
- •8.3. Синтез дискретного п–регулятора состояния
- •8.4. Синтез дискретного пи–регулятора состояния – выхода
- •8.5. Синтез дискретного наблюдателя состояния
- •9. Многомерные дискретные аср с прогнозом регулируемых переменных
- •9.1. Структурная схема системы с прогнозом регулируемых переменных и его минимизацией [15]
- •9.2. Прогнозирование рассогласования [15, 16]
- •9.3. Минимизация прогноза рассогласования [15]
- •9.4. Сведение задачи квадратичного программирования к задаче о линейной дополнительности [17, 14]
- •9.5. Решение задачи о линейной дополнительности методом Лемке
- •10. Автоматизация типовых технологических процессов [3, 18]
- •Регулирование основных параметров технологических процессов
- •Из уравнения (315) можно найти коэффициент расхода
- •Регулирование давления
- •Согласно уравнениям (313), (314) объёмный расход газа равен
- •Регулирование уровня жидкости
- •Регулирование температуры
- •Типовые схемы автоматизации технологических процессов Автоматизация насосов и компрессоров
- •Библиографический список
- •Содержание
Построение переходных процессов в замкнутых аср методом Акульшина
После определения настроечных параметров регулятора следует построить переходной процесс в замкнутой системе, чтобы оценить фактические значения показателей качества. Метод Акульшина, который может использоваться для этой цели, обладает следующими достоинствами: хорошо сочетается с методом РЧХ; легко поддается алгоритмизации; позволяет исследовать системы с чистым запаздыванием.
Пусть
на вход АСР подается воздействие типа
прямоугольная волна с амплитудой x0
и периодом Т0
(рис. 32).
Предположим, что длительность полуволны tП превышает время переходного процесса в замкнутой АСР tp:
(60)
(Тр – период колебаний переходного процесса).
При
за 3Тр
амплитуда колебаний уменьшается в 1230
раз.
Переходя в (60) к частотам, получаем:
(61)
где р=2/Тр – рабочая частота системы (частота колебаний в переходном процессе),
0=2/Т0 – частота прямоугольной волны.
При расчете настроек регуляторов методом РЧХ рабочая частота р определяется в точке ЛРЗ, которой соответствуют оптимальные настройки регулятора.
Воздействие типа прямоугольная волна можно разложить в ряд Фурье:
(62)
Напомним, что при подаче на вход АСР с АЧХ АЗС() и ФЧХ ЗС() гармонического сигнала
на её выходе также возникает гармонический сигнал
.
Тогда согласно принципу суперпозиции реакция АСР на воздействие (62) может быть записана в виде
(63)
Приемлемая точность расчетов достигается при использовании в формуле (63) 1525 слагаемых (Практически вычисления продолжаются до тех пор, пока очередное слагаемое не становиться достаточно малым).
Выражение (63) справедливо в пределах
и позволяет определить переходной процесс в замкнутой АСР. Из этого выражения следует, что для построения переходной характеристики АСР необходимо знать массив значений АЧХ и ФЧХ замкнутой системы для частот 0, 30, 50 и т.д. (т.е. нечетных гармоник разложения).
4. Анализ аср с релейными регуляторами [4]
Системы с релейными регуляторами относятся к классу нелинейных АСР. Их точный расчет возможен лишь в простейших случаях. В общем случае расчет нелинейных АСР производится приближенно в два этапа: линеаризация статической характеристики нелинейного элемента и расчет линеаризованной АСР.
Установившимся режимом работы АСР с релейными регуляторами (релейных АСР) чаще всего является режим автоколебаний. Поэтому в отличие от непрерывных линейных АСР основными показателями качества регулирования в этом случае являются параметры автоколебаний: период Та или частота а и амплитуда Аа. В качестве установившегося значения регулируемой величины условно можно принять среднее значение yср= yуст. Тогда ошибка регулирования в установившемся режиме равна разности между заданным значением регулируемой величины и её средним значением:
.
Целью расчета релейных АСР является выбор настроечных параметров релейного регулятора, обеспечивающих заданные требования к показателям качества Та, Аа, yуст.
Структурная схема релейной АСР приведена на рис. 33.
Здесь: РЭ – релейный элемент (регулятор).