
- •1. Элементарная ячейка кристаллической решетки и ее характеристики. Полиморфизм, анизотропия, их использование в технике.
- •2 Конструкционные стали нормальной прочности: углеродистые конструкционные стали обыкновенного качества и качественные стали. Состав, маркировка, упрочняющая обработка и применение.
- •2. Способы повышения упругих характеристик конструкционных материалов. Стали для пружин и рессор, их состав, марки, упрочняющая обработка.
- •1. Пластическая деформация и рекристаллизация металлов. Сдвигово-дислокационный механизм пластической деформации. Изменение структуры и свойств при холодной и горячей деформациях.
- •1. Диаграммы состояния двойных сплавов. Правило концентраций и отрезков. Использование диаграмм состояния для определения свойств сплавов и возможных видов их термической обработки.
- •1.Диаграмма Fe-Fe3c, ее фазовый и структурный анализ. Влияние углерода на структуру и свойства сталей.
- •1. Цели легирования конструкционных сталей. Влияние легирующих элементов на структуру сталей в отожженном и нормализованном состоянии.
- •2. Конструкционные материалы малой плотности: алюминиевые деформируемые сплавы, их состав, марки, термообработка, применение. Преимущества и недостатки алюминиевых сплавов по сравнению со сталями.
- •1. Фазовый и структурный анализ диаграммы Fe-FeзС. Использование полиморфизма железа при термической обработке сталей.
- •2. Конструкционные материалы малой плотности: пластмассы, их состав, применение. Преимущества и недостатки пластмасс как конструкционных материалов.
- •1. Формирование структуры литых сплавов. Влияние скорости охлаждения на степень переохлаждения и величину кристаллов. Модифицирование. Получение монокристаллов, аморфных сплавов.
- •2. Конструкционные материалы высокой удельной прочности: композиционные материалы (к.М.). Зависимость свойств к.М. От вида, количества, формы упрочнителей. Волокнистые и дисперсноупрочненные к.М.
- •1. Виды термической обработки: отжиг, закалка, отпуск, старение;их назначение. Связь диаграмм состояния двойных сплавов и возможных видов их термической обработки.
- •1. Химико-термическая обработка сталей. Цементация, азотирование, нитроцементация; режимы и цели проведения. Цементуемые стали, азотируемые стали.
- •1. Виды термической обработки сталей: отжиг, нормализация, закалка, отпуск. Цели и режимы их проведения. Свойств а отожженных, нормализованных и термически улучшенных сталей.
- •2. Преимущества и недостатки конструкционных сплавов на основе меди. Латуни, бронзы, их состав, марки, свойства, применение.
- •1. Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.
- •2.Антифрикционные материалы, используемые в узлах скольжения. Факторы, влияющие на коэффициент трения и пути его уменьшения.
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситном и промежуточном превращениях. Строение и свойства продуктов распада.
- •2. Сплавы для чувствительных элементов точных приборов. Fe-Ni-сплавы, бериллиевые бронзы, их состав, свойства, упрочняющая обработка, применение.
- •1. Превращения в закаленной стали при отпуске. Выбор вида отпуска (низкий, средний, высокий) в зависимости от назначения деталей и инструмента.
- •2. Материалы вакуумной техники. Влияние давления и температуры на фазовое состояние материала. Сравнительная оценка вакуумной стойкости металлических и неметаллических материалов.
- •2. Высокопрочные стали. Легированные стали, мартенситностареющие стали: их состав, марки, упрочняющая обработка, применение.
- •2. Легированные низкоуглеродистые и среднеуглеродистые конструкционные стали. Принцип легирования, упрочняющая обработка, марки, применение.
- •1. Формирование структуры литых сплавов. Влияние скорости охлаждения на степень переохлаждения и размер кристаллов. Модифицирование. Получение монокристаллов, аморфных сплавов.
- •2. Жаропрочные материалы. Изменение механических свойств металлов при нагреве. Механизм ползучести. Пути создания оптимальной структуры жаропрочных материалов.
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситном и промежуточном превращениях. Строение и свойства продуктов распада.
- •2. Бериллий и сплавы на его основе. Механические и технологические свойства бериллия.
- •2. Коррозионно-стойкие стали устойчивы к электрохимической коррозии.
- •1. Теория и практика отпуска сталей. Влияние легирующих элементов на превращения закаленных сталей при нагреве. Структура и свойства отпущенных сталей.
- •2. Материалы, устойчивые против химической коррозии. Способы повышения жаростойкости металлов и сплавов
- •1. Закалка сталей. Выбор температур нагрева и охлаждающих сред при закалке. Влияние легирующих элементов на критическую скорость охлаждения, прокаливаемость и закаливаемость сталей.
- •2. Кристаллофизические методы очистки полупроводников, легирование полупроводников.
- •2. Вопрос не входит в билеты
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситом и промежуточном превращениях. Строение и свойства продуктов распада.
- •1. Превращение в закаленной стали при отпуске. Влияние температур отпуска на свойства сталей. Выбор видов отпуска (низкий, средний, высокий) в зависимости от назначения деталей и инструмента.
- •2. Радиационностойкие материалы. Причины образования радиационных дефектов, Радиационная стойкость. Основные группы радиационных конструкционных материалов.
- •2. Вопрос не входит в билеты
1. Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.
Закалка
Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости.
Основными параметрами являются температура нагрева и скорость охлаждения. Продолжительность нагрева зависит от нагревательного устройства, по опытным данным на 1 мм сечения затрачивается: в электрической печи – 1,5…2 мин.; в пламенной печи – 1 мин.; в соляной ванне – 0,5 мин.; в свинцовой ванне – 0,1…0,15 мин.
По температуре нагрева различают виды закалки:
– полная, с температурой нагрева на 30…50oС выше критической температуры А3
.
Применяют ее для доэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
.
Неполная закалка доэвтектоидных сталей недопустима, так как в структуре остается мягкий феррит. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
– неполная с температурой нагрева на 30…50 oС выше критической температуры А1
Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:
.
После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита.
Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.
Охлаждение при закалке.
Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали.
Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию.
Внутренние напряжения, уравновешиваемые в пределах макроскопических частей тела, называются напряжениями I рода. Они ответственны за искажение формы (коробление) и образование трещин при термообработке. Причинами возникновения напряжений являются:
различие температуры по сечению изделия при охлаждении;
разновременное протекание фазовых превращений в разных участках
Закаливаемость – способность стали приобретать высокую твердость при закалке.
Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются.
Прокаливаемость – способность получать закаленный слой с мартенситной и троосто-мартенситной структурой, обладающей высокой твердостью, на определенную глубину.
За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита.
Чем меньше критическая скорость закалки, тем выше прокаливаемость. Укрупнение зерен повышает прокаливаемость.
Если скорость охлаждения в сердцевине изделия превышает критическую то сталь имеет сквозную прокаливаемость.
Нерастворимые частицы и неоднородность аустенита уменьшают прокаливаемость.
Характеристикой прокаливаемости является критический диаметр.
Критический диаметр – максимальное сечение, прокаливающееся в данном охладителе на глубину, равную радиусу изделия.
С введением в сталь легирующих элементов закаливаемость и прокаливаемость увеличиваются (особенно молибден и бор, кобальт – наоборот).