
- •1. Элементарная ячейка кристаллической решетки и ее характеристики. Полиморфизм, анизотропия, их использование в технике.
- •2 Конструкционные стали нормальной прочности: углеродистые конструкционные стали обыкновенного качества и качественные стали. Состав, маркировка, упрочняющая обработка и применение.
- •2. Способы повышения упругих характеристик конструкционных материалов. Стали для пружин и рессор, их состав, марки, упрочняющая обработка.
- •1. Пластическая деформация и рекристаллизация металлов. Сдвигово-дислокационный механизм пластической деформации. Изменение структуры и свойств при холодной и горячей деформациях.
- •1. Диаграммы состояния двойных сплавов. Правило концентраций и отрезков. Использование диаграмм состояния для определения свойств сплавов и возможных видов их термической обработки.
- •1.Диаграмма Fe-Fe3c, ее фазовый и структурный анализ. Влияние углерода на структуру и свойства сталей.
- •1. Цели легирования конструкционных сталей. Влияние легирующих элементов на структуру сталей в отожженном и нормализованном состоянии.
- •2. Конструкционные материалы малой плотности: алюминиевые деформируемые сплавы, их состав, марки, термообработка, применение. Преимущества и недостатки алюминиевых сплавов по сравнению со сталями.
- •1. Фазовый и структурный анализ диаграммы Fe-FeзС. Использование полиморфизма железа при термической обработке сталей.
- •2. Конструкционные материалы малой плотности: пластмассы, их состав, применение. Преимущества и недостатки пластмасс как конструкционных материалов.
- •1. Формирование структуры литых сплавов. Влияние скорости охлаждения на степень переохлаждения и величину кристаллов. Модифицирование. Получение монокристаллов, аморфных сплавов.
- •2. Конструкционные материалы высокой удельной прочности: композиционные материалы (к.М.). Зависимость свойств к.М. От вида, количества, формы упрочнителей. Волокнистые и дисперсноупрочненные к.М.
- •1. Виды термической обработки: отжиг, закалка, отпуск, старение;их назначение. Связь диаграмм состояния двойных сплавов и возможных видов их термической обработки.
- •1. Химико-термическая обработка сталей. Цементация, азотирование, нитроцементация; режимы и цели проведения. Цементуемые стали, азотируемые стали.
- •1. Виды термической обработки сталей: отжиг, нормализация, закалка, отпуск. Цели и режимы их проведения. Свойств а отожженных, нормализованных и термически улучшенных сталей.
- •2. Преимущества и недостатки конструкционных сплавов на основе меди. Латуни, бронзы, их состав, марки, свойства, применение.
- •1. Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.
- •2.Антифрикционные материалы, используемые в узлах скольжения. Факторы, влияющие на коэффициент трения и пути его уменьшения.
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситном и промежуточном превращениях. Строение и свойства продуктов распада.
- •2. Сплавы для чувствительных элементов точных приборов. Fe-Ni-сплавы, бериллиевые бронзы, их состав, свойства, упрочняющая обработка, применение.
- •1. Превращения в закаленной стали при отпуске. Выбор вида отпуска (низкий, средний, высокий) в зависимости от назначения деталей и инструмента.
- •2. Материалы вакуумной техники. Влияние давления и температуры на фазовое состояние материала. Сравнительная оценка вакуумной стойкости металлических и неметаллических материалов.
- •2. Высокопрочные стали. Легированные стали, мартенситностареющие стали: их состав, марки, упрочняющая обработка, применение.
- •2. Легированные низкоуглеродистые и среднеуглеродистые конструкционные стали. Принцип легирования, упрочняющая обработка, марки, применение.
- •1. Формирование структуры литых сплавов. Влияние скорости охлаждения на степень переохлаждения и размер кристаллов. Модифицирование. Получение монокристаллов, аморфных сплавов.
- •2. Жаропрочные материалы. Изменение механических свойств металлов при нагреве. Механизм ползучести. Пути создания оптимальной структуры жаропрочных материалов.
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситном и промежуточном превращениях. Строение и свойства продуктов распада.
- •2. Бериллий и сплавы на его основе. Механические и технологические свойства бериллия.
- •2. Коррозионно-стойкие стали устойчивы к электрохимической коррозии.
- •1. Теория и практика отпуска сталей. Влияние легирующих элементов на превращения закаленных сталей при нагреве. Структура и свойства отпущенных сталей.
- •2. Материалы, устойчивые против химической коррозии. Способы повышения жаростойкости металлов и сплавов
- •1. Закалка сталей. Выбор температур нагрева и охлаждающих сред при закалке. Влияние легирующих элементов на критическую скорость охлаждения, прокаливаемость и закаливаемость сталей.
- •2. Кристаллофизические методы очистки полупроводников, легирование полупроводников.
- •2. Вопрос не входит в билеты
- •1. Распад переохлажденного аустенита. Формирование структуры при перлитном, мартенситом и промежуточном превращениях. Строение и свойства продуктов распада.
- •1. Превращение в закаленной стали при отпуске. Влияние температур отпуска на свойства сталей. Выбор видов отпуска (низкий, средний, высокий) в зависимости от назначения деталей и инструмента.
- •2. Радиационностойкие материалы. Причины образования радиационных дефектов, Радиационная стойкость. Основные группы радиационных конструкционных материалов.
- •2. Вопрос не входит в билеты
1. Химико-термическая обработка сталей. Цементация, азотирование, нитроцементация; режимы и цели проведения. Цементуемые стали, азотируемые стали.
Химико-термическая обработка (ХТО) – процесс изменения химического состава, микроструктуры и свойств поверхностного слоя детали.
Изменение химического состава поверхностных слоев достигается в результате их взаимодействия с окружающей средой (твердой, жидкой, газообразной, плазменной), в которой осуществляется нагрев.
В результате изменения химического состава поверхностного слоя изменяются его фазовый состав и микроструктура,
Основными параметрами химико-термической обработки являются температура нагрева и продолжительность выдержки.
В основе любой разновидности химико-термической обработки лежат процессы диссоциации, адсорбции, диффузии.
Диссоциация – получение насыщающего элемента в активированном атомарном состоянии в результате химических реакций, а также испарения.
Например,
Адсорбция – захват поверхностью детали атомов насыщающего элемента.
Адсорбция – всегда экзотермический процесс, приводящий к уменьшению свободной энергии.
Диффузия – перемещение адсорбированных атомов вглубь изделия.
Для осуществления процессов адсорбции и диффузии необходимо, чтобы насыщающий элемент взаимодействовал с основным металлом, образуя твердые растворы или химические соединения.
Химико-термическая обработка является основным способом поверхностного упрочнения деталей.
Основными разновидностями химико-термической обработки являются:
цементация (насыщение поверхностного слоя углеродом);
азотирование (насыщение поверхностного слоя азотом);
нитроцементация или цианирование (насыщение поверхностного слоя одновременно углеродом и азотом);
диффузионная металлизация (насыщение поверхностного слоя различными металлами).
Цементация – химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС.
Цементации подвергают стали с низким содержанием углерода (до 0,25 %).
Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита ( h. = 1…2 мм).
Степень цементации – среднее содержание углерода в поверхностном слое (обычно, не более 1,2 %).
Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость.
Азотирование – химико-термическая обработка, при которой поверхностные слои насыщаются азотом.
При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.
При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.
Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий.
Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.
Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю.
В зависимости от условий работы деталей различают азотирование:
для повышения поверхностной твердости и износостойкости;
для улучшения коррозионной стойкости (антикоррозионное азотирование).
Нитроцементация – газовое цианирование, осуществляется в газовых смесях из цементующего газа и диссоциированного аммиака.
Состав газа температура процесса определяют соотношение углерода и азота в цианированном слое. Глубина слоя зависит от температуры и продолжительности выдержки.
Высокотемпературная нитроцементация проводится при температуре 830…950oС, для машиностроительных деталей из углеродистых и малолегированных сталей при повышенном содержании аммиака. Завершающей термической обработкой является закалка с низким отпуском. Твердость достигает 56…62 HRC.
На ВАЗе 95 % деталей подвергаются нитроцементации.
Низкотемпературной нитроцементации подвергают инструмент из быстрорежущей стали после термической обработки (закалки и отпуска). Процесс проводят при температуре 530…570oС, в течение 1,5…3 часов. Образуется поверхностный слой толщиной 0,02…0,004 мм с твердостью 900…1200 HV.
Нитроцементация характеризуется безопасностью в работе, низкой стоимостью.
2. Сравнительная характеристика конструкционных материалов малой плотности: алюминиевых сплавов, магниевых сплавов, конструкционных пластмасс. Марки, термическая обработка, применение.
Алюминий и его сплавы.
Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкий к коррозии. В зависимости от степени частоты первичный алюминий согласно ГОСТ 11069-74 бывает особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% Al; буква "Е" обозначает повышенное содержание железа и пониженное кремния.
А999 - алюминий особой чистоты, в котором содержится не менее 99,999% Al;
А5 - алюминий технической чистоты в котором 99,5% алюминия. Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.
Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. Их марки приведены в ГОСТ4784-74. К деформируемым алюминиевым сплавам не упрочняемым термообработкой, относятся сплавы системы Al-Mn и AL-Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы, входящие в состав сплава компонентов и цифры, указывающие содержание легирующего элемента в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg с добавками некоторых элементов (дуралюны, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного хим.состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8.
Магний и его сплавы
Магний – очень легкий металл, его плотность – 1,74 г/см3. Температура плавления – 650oС. Магний имеет гексагональную плотноупакованную кристаллическую решетку. Очень активен химически, вплоть до самовозгорания на воздухе. Механические свойства технически чистого магния (Мг1): предел прочности – 190 МПа, относительное удлинение – 18 %, модуль упругости – 4500 МПа.
Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные.
Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420oС, старение при температуре 260…300oС в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа.
Билет 13