Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бондарев изм 2.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
664.47 Кб
Скачать

Содержание:

Введение 3

1. Принципиальная схема САР 4

2. Выбор оптимальных параметров настройки регулятора 8

2.1. Вывод уравнения динамики объекта регулирования 8

2.2. Динамическая модель регулятора 10

2.3. Структурная схема САР 11

2.4. Расчет ОПН регулятора 14

3. Статический анализ САР 16

3.1. Статическая точность регулирования 16

3.2.Анализ влияния люфтов и зазоров в регулирующих органах на статические свойства САР 18

4. Влияние отдельных элементов регулятора на качество САР 20

4.1. Оценка влияния численных значений времени исполнительного механизма и инерционности датчика на показатели качества переходных процессов в заданной САР 20

4.2. Оценка влияния времени запаздывания датчика на устойчивость САР 24

4.3. Оценка влияния нечувствительности регулятора на свойства САР 26

5. Инструкция по настройке и обслуживанию регулятора 28

Список используемой литературы 32

Введение.

Целью курсовой работы является исследование оптимальных параметров настройки регулятора САР.

Курсовая работа заключается в функциональном анализе заданной системы автоматического регулирования, анализа устойчивости САР при известном законе регулирования и оценка качества переходных процессов. В качестве исходных данных использование уравнений типовых объектом регулирования и уравнения элементов реальных регуляторов.

Исследование САР производится методом линейной теории автоматического регулирования, необходимые сведения были взяты в учебнике.

Исследование устойчивости САР производится с использованием программного пакета VisSim. Запасы устойчивости по фазе и амплитуде определяются не менее чем для трёх значений заданного настроечного параметра регулятора. Это позволяет настроить зависимость показателей устойчивости от величины настроечного параметра и выбрать наиболее подходящее его значение.

Исследование качества переходных процессов в САР производится путём оказания скачкообразного возмущения на объект при выбранных на предыдущем этапе значений настроечных параметров регулятора.

1. Принципиальная схема сар.

Данная САР предназначена для поддержания постоянной вязкости топлива в ГД.

Вискозиметр типа ВИСК-21П предназначен для измерения вязкости топлива или смеси двух разных сортов топлива: он дает выходной сигнал, соответствующий измеряемому значению. На рис. 1 показан общий вид вискозиметра ВИСК-21 П.

Для измерения вязкости датчик может передавать факти­ческое значение на регулятор, который через клапан управ­ляет подачей пара в подогреватель топлива.

Рис. 1 Общий вид ВИСК - 21 П

ВИСК-21П монтируется непосредственно в напорной тру­бе, поэтому весь поток топлива идет через датчик, что исклю­чает время запаздывания, и в силу этого измеряемая величи­на характеризуется вязкостью основного потока топлива. Датчик работает по принципу непрерывной подачи новой сре­ды между измерительными шайбами, что обеспечивает быст­рое измерение вязкости. ВИСК-21П не чувствителен к загряз­нениям, так как в нем нет ни капиллярных трубок, ни каких- либо узких отверстий, которые могли бы закупориться. Ка­либровку датчика можно проверить без инструментов с по­мощью груза, поставляемого совместно с датчиком.

На рис. 2 представлено устройство датчика и принципи­альная схема подачи топлива через вискозиметр ВИСК-21П. Датчик работает по принципу использования силы сдвига в потоке при помощи одного вращающегося и одного чувстви­тельного диска (шайбы). Шайба 1 вращающегося с постоян­ной скоростью диска, имеет радиальные пазы, края которых образуют лопатки. Эти лопатки постоянно захватывают топ­ливо и нагнетают ее в зазор между двумя шайбами. На стационарную шайбу 5 воздействует крутящий момент, пропорци­ональный измеряемому значению вязкости и расстоянию между шайбами. Крутящий момент передается на преобразователь, который работает по принципу системы равновесия сил и выдает пневматический выходной сигнал, пропорцио­нальный изменению вязкости. Подача воздуха к усилитель­ному реле 7 и датчику осуществляется через магистральный штуцер 16 и дроссель 6.

Диапазон измерения вязкости калибруется в величинах зазора-3- между вращающейся и стационарной шайбами. Чем шире зазор между шайбами, тем обширнее диапазон изме­рения, и наоборот, чем уже зазор, тем более ограничен диа­пазон измерения. Измерительный преобразователь оснаща­ется грузиком, облегчающим контроль калибровки. Стационарная измеряющая шайба 5 прочно соединена с измеряющим валом, который также установлен в двух предва­рительно натянутых шарикоподшипниках. Резиновое кольцо 4 , вулканизированное с двумя коническими поверхностями, действует в качестве уплотнения между топливом в измеритель ной коробке и наружным воздухом. Такая конструкция короб­ки сальника не вносит погрешности в измерение вязкости.

Измерительный преобразователь является рычажной сис­темой с откидной заслонкой 10, соплом 9 и двумя сильфонами 13 и 14 обратной связи. Измеряемый момент вызывает движение, которое передается через измерительный вал ры­чажной системе откидной заслонки. Когда измеряемый момент увеличивается, заслонка 10 приближается к соплу 9 и давление в его камере увеличивается. Усиленный выходной сигнал поступает в сильфоны 13 и 14 обратной связи и вызы­вает силу, противодействующую рычажной системе, которая уравновешивает измеряемый момент.

Рис. 2 Устройство датчика и принципиальная схема подачи топлива

А — устройство датчика: 1 — вращающаяся шайба; 2 — пустотелый вал; 3 — зазор между шайбами; 4 — резиновое кольцо; 5—стационар­ная шайба. Б — принципиальная схема подачи топлива через вискози­метр ВИСК-21П: 6 — дроссель; 7 — усилительное реле; 8 — регулиру­ющий стопор; 9 — сопло; 10 — откидная заслонка; 11 — регулирую­щий стопор; 12 — пружина; 13 — сильфон; 14 — сильфон; 15 — воз­душный редукционный клапан; 16 — магистраль подачи воздуха в си­стеме; 17 — выходной сигнал из усилительного реле.

Принцип действия: при увеличении вязкости откидная заслонка 10 приближается к соплу 9. Так как воздух подается непрерывно, то давление возрастает у сопла и в сильфонах 13 и 14 обратной связи пока не наступит равновесие между измеряемым моментом и моментом обратной связи от сильфона* Оба сильфона имеют одинаковые размеры. Один силь- фон стационарный, а второй — 14 — регулируемый. Передви­гая этот сильфон по направлению стрелок, можно изменить диапазон измерения. Если диапазон уменьшается, возраста­ет чувствительность вискозиметра.

Для регулирования измеряемого диапазона, т.е. отправной точки диапазона измерения (нулевой точки), следует исполь­зовать приспособление калибровки нулевой точки, с помощью которого можно изменить натяжение уравновешивающей пру­жины 12. Эта пружина непосредственно связана с рычагом на измерительном вале и уравновешивает измеряемый момент. Таким образом, в результате натяжения пружины диапазон ее измерения смещается параллельно ранее установленному.

Если сила, создаваемая сильфоном обратной связи, недо­статочна, то рычаг переместится к регулируемому стопору 8. Другой стопор 11 ограничивает длину хода заслонки 10 в про­тивоположном направлении.

Классификация САР:

По назначению: стабилизирующая;

По наличию усилителя: прямого действия;

По используемой энергии: гидравлическая;

По характеру сигнала: непрерывная;

По принципу регулирования: по отклонению;

По закону регулирования: пропорциональный.

Функциональная схема САР содержит:

Д - датчик температуры топлива (регулируемой величины), выходной сигнал которого соответствует действительному значению регулируемой величины ;

ЭС - элемент сравнения, формирующий сигнал отклонения регулируемой величины от заданного значения;

КУ - последовательное корректирующее устройство;

У - усилитель, который повышает мощность входного сигнала до уровня, необходимого для перемещения ИМ (и регулирующего органа регулятора) с требуемой скоростью;

ИМ - исполнительный механизм;

ЖОС - жесткая обратная связь;

РО - регулирующий орган, связанный механической передачей с ИМ и преобразующий перемещение в непосредственное регулирующее воздействие на ОР.

Рис. 3. Функциональная схема САР

Д:

Запишем уравнение элемента схемы САР в операционной форме:

Д:

Запишем передаточную функцию элемента схемы САР:

Д: