
- •1 Вопрос
- •2 Вопрос Гармонические колебания. Пружинный маятник
- •3.Гармонические колебания. Математический маятник.
- •4. Гармонические колебания. Физический маятник
- •5) Свободные гармонические колебания в колебательном контуре
- •6) Сложение гармонических колебаний одного направления и одинаковой частоты, биения
- •Вопрос7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Вопрос 8. Затухающие колебания
- •Вопрос 9 . Вынужденные колебания. Резананс
- •Вопрос 10. Переменный ток. Получение и основные характеристики
- •Вопрос 13 Сопротивление, емкость, индуктивность в цепи переменного тока.
- •Вопрос 14 Мощность, выделяемая в цепи переменного тока.
- •17. Электромагнитные волны и их характеристики.
- •18. Энергия и импульс электромагнитной волны.
- •21)Интерференция света. Опыт Юнга
- •22)Интерференция света в плоскопараллельной пластинке и тонком клинке
- •23) Кольца Ньютона
- •25.Дифракция света.Метод зон френеля.Диск
- •26.Дифракция Фраунгофера на прямоугольной щели
- •Вопрос 29. Поляризация. Закон Блюстера
- •Закон Брюстера
- •Вопрос 30. Оптическая анизотропия
- •(Вопр№31) Электронная теория дисперсии света. Аномальная и нормальная дисперсия света. Связь дисперсии и поглощения
- •(Вопр№32) Зависимость показателя преломления от частоты падающего света.
- •33. Поглощение света.Закон Бугера.
6) Сложение гармонических колебаний одного направления и одинаковой частоты, биения
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты
воспользовавшись методом вращающегося вектора амплитуды. Построим векторные диаграммы этих колебаний (рис. 203). Tax как векторы A1 и А2 вращаются с одинаковой угловой скоростью w0, то разность фаз (j2—j1) между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет
(144.1)
В выражении (144.1) амплитуда А и начальная фаза j соответственно задаются соотношениями
(144.2)
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2—j1) складываемых колебаний.
Проанализируем выражение (144.2) в зависимости от разности фаз (j2—j1):
1) j2—j1 = ±2mp (т=0, 1, 2, ...), тогда A=A1+A2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
2) j2—j1 = ±(2m+1)p (т=0, 1, 2, ...), тогда A=|A1–A2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний.
Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.
Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем
(144.3)
Результирующее колебание (144.3) можно рассматривать как гармоническое с частотой w, амплитуда Аб, которого изменяется по следующему периодическому закону:
(144.4)
Частота изменения Аб в два раза больше частоты изменения косинуса (так как берется по модулю), т. е. частота биений равна разности частот складываемых колебаний:
Период биений
Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии дают график результирующего колебания (144.3), а огибающие их — график медленно меняющейся по уравнению (144.4) амплитуды.
Определение частоты тона (звука определенной высоты) биений между эталонным и измеряемым колебаниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
Любые сложные периодические колебания s=f(t) можно представить в виде суперпозиции одновременно совершающихся гармонических колебаний с различными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0:
(144.5)
Представление периодической функции в виде (144.5) связывают с понятием гармонического анализа сложного периодического колебания, илиразложения Фурье.* Слагаемые ряда Фурье, определяющие гармонические колебания с частотами w0, 2w0, 3w0, ..., называются первой (или основной),второй, третьей и т. д. гармониками сложного периодического колебания