
- •1 Вопрос
- •2 Вопрос Гармонические колебания. Пружинный маятник
- •3.Гармонические колебания. Математический маятник.
- •4. Гармонические колебания. Физический маятник
- •5) Свободные гармонические колебания в колебательном контуре
- •6) Сложение гармонических колебаний одного направления и одинаковой частоты, биения
- •Вопрос7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Вопрос 8. Затухающие колебания
- •Вопрос 9 . Вынужденные колебания. Резананс
- •Вопрос 10. Переменный ток. Получение и основные характеристики
- •Вопрос 13 Сопротивление, емкость, индуктивность в цепи переменного тока.
- •Вопрос 14 Мощность, выделяемая в цепи переменного тока.
- •17. Электромагнитные волны и их характеристики.
- •18. Энергия и импульс электромагнитной волны.
- •21)Интерференция света. Опыт Юнга
- •22)Интерференция света в плоскопараллельной пластинке и тонком клинке
- •23) Кольца Ньютона
- •25.Дифракция света.Метод зон френеля.Диск
- •26.Дифракция Фраунгофера на прямоугольной щели
- •Вопрос 29. Поляризация. Закон Блюстера
- •Закон Брюстера
- •Вопрос 30. Оптическая анизотропия
- •(Вопр№31) Электронная теория дисперсии света. Аномальная и нормальная дисперсия света. Связь дисперсии и поглощения
- •(Вопр№32) Зависимость показателя преломления от частоты падающего света.
- •33. Поглощение света.Закон Бугера.
Вопрос 29. Поляризация. Закон Блюстера
Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.
В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.[1]
Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы — вращение вокруг волнового вектора.
Причиной возникновения поляризации волн может быть:
несимметричная генерация волн в источнике возмущения;
анизотропность среды распространения волн;
преломление и отражение на границе двух сред.
Зависимость мгновенных потенциалов при круговой поляризации
В общем случае для гармонических волн конец волнового вектора описывает в плоскости, поперечной направлению распространения волны, эллипс, и такая поляризация называется эллиптической. Важными частными случаями являются линейная поляризация, при которой колебания возмущения происходят в какой-то одной плоскости, в таком случае говорят о «плоско-поляризованной волне», и круговая или циркулярная поляризация, при которой конец вектора амплитуды описывает окружность в плоскости колебаний, круговая поляризация в зависимости от направления вращения вектора может быть правой или левой.
Закон Брюстера
Пусть угол падения i таков, что отраженный луч перпендикулярен преломленному, т.е. r = π/2 - iБр. Это условие называют условием Брюстера (см. рисунок ниже), а угол - углом Брюстера - iБр.
Используя закон преломления, получим формулу, определяющую угол Брюстера:
.
При выполнении условия Брюстера i + r = π/2, тогда из формулы Френеля для получим:
Таким образом, при выполнении условия Брюстера, отраженный свет будет полностью поляризован в плоскости, перпендикулярной плоскости падения.
Это утверждение носит название закона Брюстера.
Вопрос 30. Оптическая анизотропия
Оптически изотропные вещества становятся оптически анизотропными под действием: 1) одностороннего сжатия или растяжения (кристаллы кубической системы, стекла и др.); 2) электрического поля (эффект Керра*; жидкости, аморфные тела, тазы); 3) магнитного поля (жидкости, стекла, коллоиды). В перечисленных случаях вещество приобретает свойства одноосного кристалла, оптическая ось которого со впадает с направлением деформации, электрического или магнитного полей соответственно указанным выше воздействиям.
Мерой возникающей оптической анизотропии служит разность показателей прело мления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси:
(195.1)
где k1, k2, k3 - постоянные, характеризующие вещество, - нормальное напряжение (см. § 21), Е и Н - соответственно напряженность электрического и магнитного полей. На рис. 284 приведена установка для наблюдения эффекта Керра в жидкостях (установки для изучения рассмотренных явлений однотипны). Ячейка Керра - кювета с жидкостью (например, нитробензолом), в которую введены пластины конденсатора, помещается между скрещенными поляризатором Р и анализатором А. При отсутствии электрического поля свет через систему не проходит. При наложении электрического поля жидкость становится двоякопреломляющей; при изменении разности потенциалов между электродами меняется степень анизотропии вещества, а следовательно, и интенсивность света, прошедшего через анализатор. На пути l между обыкновенным и необыкновенным лучами возникает оптическая разность хода
(с учетом формулы (195.1)) или соответственно разность фаз
где B = k2/ - постоянная Керра.
Рис. 284
Эффект Керра - оптическая анизотропия веществ под действием электрического поля - объясняется различной поляризуемостью молекул жидкости по разным направлениям. Это явление практически безынерционно, т.е. время перехода вещества из изотропного состояния в анизотропное при включении поля (и обратно) составляет приблизительно 10-10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (звукозапись, воспроизводство звука, скоростная фото- и киносъемка, изучение скорости распространения света и т. д.), в оптической локации, в оптической телефонии и т. д.
Искусственная анизотропия под действием механических воздействий позволяет исследовать напряжения, возникающие в прозрачных телах. В данном случае о степени деформации отдельных участков изделия (например, остаточных деформаций в стекле при закалке) судят по распределению в нем окраски. Так как применяемые обычно в технике материалы (металлы) непрозрачны, то исследование напряжений производят на прозрачных моделях, а потом делают соответствующий пересчет на проектируемую конструкцию.