
- •1 Вопрос
- •2 Вопрос Гармонические колебания. Пружинный маятник
- •3.Гармонические колебания. Математический маятник.
- •4. Гармонические колебания. Физический маятник
- •5) Свободные гармонические колебания в колебательном контуре
- •6) Сложение гармонических колебаний одного направления и одинаковой частоты, биения
- •Вопрос7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •Вопрос 8. Затухающие колебания
- •Вопрос 9 . Вынужденные колебания. Резананс
- •Вопрос 10. Переменный ток. Получение и основные характеристики
- •Вопрос 13 Сопротивление, емкость, индуктивность в цепи переменного тока.
- •Вопрос 14 Мощность, выделяемая в цепи переменного тока.
- •17. Электромагнитные волны и их характеристики.
- •18. Энергия и импульс электромагнитной волны.
- •21)Интерференция света. Опыт Юнга
- •22)Интерференция света в плоскопараллельной пластинке и тонком клинке
- •23) Кольца Ньютона
- •25.Дифракция света.Метод зон френеля.Диск
- •26.Дифракция Фраунгофера на прямоугольной щели
- •Вопрос 29. Поляризация. Закон Блюстера
- •Закон Брюстера
- •Вопрос 30. Оптическая анизотропия
- •(Вопр№31) Электронная теория дисперсии света. Аномальная и нормальная дисперсия света. Связь дисперсии и поглощения
- •(Вопр№32) Зависимость показателя преломления от частоты падающего света.
- •33. Поглощение света.Закон Бугера.
1 Вопрос
Виды колебаний. Свободные (собственные), гармонические колебания и их характеристики.
Колебания-движение периодически повторяющийся процесс во премени.
Свободные (или собственные) — это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие
Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
Гармонические колебания — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид
или
,
где х —
смещение (отклонение) колеблющейся
точки от положения равновесия в момент
времени t; А —
амплитуда колебаний, это величина,
определяющая максимальное отклонение
колеблющейся точки от положения
равновесия; ω —
циклическая частота, величина, показывающая
число полных колебаний происходящих в
течение 2π секунд;
—
полная фаза колебаний,
—
начальная фаза колебаний.
Обобщенное гармоническое колебание в дифференциальном виде
Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы,
(м)
Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание),
(с)
Частота — число колебаний в единицу времени,
(Гц, с−1).
Период колебаний и частота — обратные величины;
и
В
круговых или циклических процессах
вместо характеристики «частота»
используется понятие круговая
(циклическая) частота
(рад/с,
Гц, с−1),
показывающая число колебаний за
единиц
времени:
2 Вопрос Гармонические колебания. Пружинный маятник
Пружинный маятник – груз массой m, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F=-kx
Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению
F (t) = ma (t) = –m ω2 x (t). |
|
Рисунок 2.2.1. Колебания груза на пружине. Трения нет |
Круговая частота ω0 свободных колебаний груза на пружине находится из второго закона Ньютона:
|
откуда
|
Частота ω0 называется собственной частотой колебательной системы.
Период T гармонических колебаний груза на пружине равен
|
При горизонтальном расположении системы пружина–груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x0, равную
|
и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω0 и периода колебаний T справедливы и в этом случае.
Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x: ускорение является второй производной координаты тела x по времени t:
|
Поэтому второй закон Ньютона для груза на пружине может быть записан в виде
|
или
|
|
(*) |
где
Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида
|
-
груз на пружине при малых отклонениях
совершает гармонические колебания во
времени t с периодом Т и амплитудой
А.
-
колебания происходят по закону синуса
(начинаются от толчка груза) ...
-
... или по закону косинуса (начинаются
отведением груза в сторону).