Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EKONOMETRIKA.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
513.36 Кб
Скачать

18.Модельное ура-е регрессии…….

Корреляционной зависимостью между двумя переменными величинами называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой.

Корреляционная зависимость может быть представлена в виде:

Мх(Y)=φ(x) (1) или МY(X)=φ(y) (2)

Уравнения (1) и (2) называются модельными уравнениями регрессии (или просто уравнениями регрессии) соответственно Y по X и X по Y, функции φ(х) и ψ(у) - модельными функциями регрессии (или функциями регрессии), а их графики — модельными линиями регрессии (или линиями регрессии).

Для точного описания уравнения регрессии необходимо знать условный закон распределения переменной при условии, что переменная примет значение , .

В статистической практике такой информации получить не удается, т.к. обычно имеется выборка пар значений объема .

В этом случае речь может идти о приближенном выражении, аппроксимации по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии

- условная средняя переменной при фиксированном значении ,

- параметры кривой.

При должна сходиться по вероятности к функции регрессии .

Таким образом, эконометрическая модель имеет вид:

где - наблюдаемое значение зависимой переменной,

- объясненная часть, зависящая от значений объясняющих переменных,

- случайная составляющая.

В многомерном случае, когда х – вектор, , где - могут считаться как случайными, так и детерминированными.

.

Итак, чтобы получить достаточно достоверные и информативные данные о распределении какой-либо случайной величины, необходимо иметь выборку её наблюдений достаточно большого объема. Такие выборки представляют собой наборы значений - число наблюдений, - количество объясняющих переменных.

Рассмотрим .

Парная регрессия – уравнение связи двух переменных .

Определение. Любое эконометрическое исследование начинается со спецификации модели, т.е. с формулировки (выбора) вида модели, исходя из соответствующей теории связи между переменными.

Различают линейные и нелинейные регрессии. Нелинейные регрессии делят на два класса: регрессии, нелинейные относительно включенных объясняющих переменных, но линейных по оцениваемым параметрам, и, регрессии, нелинейные по оцениваемым параметрам.

Линейная: .

Нелинейные по объясняющим параметрам:

Регрессии, нелинейные по оцениваемым параметрам:

Степенная:

Показательная:

Экспоненциальная:

Логарифмическая:

Полулогарифмическая:

Обратная:

Если у нас есть набор значений двух переменных и то на плоскости эти значения можно отобразить точками, таким образом получаем поле корреляции, которое изображено на рис. 1.

Рис.1. Поле корреляции

20.Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi — групповая средняя;  ni — число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную вариацию, т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Межгрупповая дисперсия характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]