
- •1. Геология как наука и область деятельности людей. Разные уровни организации материи, изучаемые геологической наукой.
- •2. Предмет, задачи и методы геологической науки.
- •3. Четыре основных направления геологических исследований. Успехи российской геологической науки.
- •4. Ряды организации материи, изучаемые геологией.
- •5. Понятие о геологическом пространстве и полицикличности форм геологических движений. Геологические тела и геологические границы.
- •6. Научное и практическое значение геологической науки.
- •7. Возможности геологии в формировании мировоззрения людей. Геология как школьный предмет.
- •9. Краткое изложение геологической науки. Геологическая служба в России и в н.Н.
- •10. История геологической науки. Российские ученые.
- •11. Науки на стыке геологии и географии.
- •12. Строение Вселенной. Структура нашей галактики и место Солнца в ней.
- •13. Строение солнечной системы.
- •14. Земля как двойная планета.
- •15. Теория Большого Взрыва.
- •17. Земля как планета.
- •18. Оболочки земного шара.
- •19. Геосферы Земли.
- •20. Внутренне строение Земли. Дифференциация земного вещества.
- •21. Литосфера и земная кора. Строение. Астеносфера.
- •22. Отличительные признаки планеты Земля. Биосфера.
- •23. Ноосфера. Экосфера.
- •25. Аморфное и кристаллическое состояние вещества. Изотропия и анизотропия.
- •26. Понятие о кристаллической решетке. Федоров. Лауэ.
- •27. Закон постоянства гранных углов
- •33. Формы нахождения минералов в природе.
- •34. Классификация минералов. Химическая. Типы и классы в царстве минералов.
- •35. Самородные элементы. Месторождения.
- •36. Сульфиды.
- •37. Галоидные соединения (галоиды)
- •38. Окислы и гидроокислы
- •39. Карбонаты
- •40. Минералы – сульфаты
- •41. Силикаты
- •42. Островные силикаты
- •43. Цепочечные и ленточные силикаты
- •44. Листовые (слоистые) силикаты
- •45. Каркасные силикаты
- •46. Полевые шпаты. Изоморфные ряды. Плагиоклазы.
- •47. Происхождение и применение силикатов
- •48. Каустобиолиты.
- •49. Парагенезис минералов. Минеральные ассоциации
- •50. Породообразующие минералы. Акцессорные минералы.
- •51. Горные породы, свойства. Текстура, структура. Руда
- •52. Генетическая классификация горных пород.
- •53. Магматические горные породы. Характеристика. Минеральный состав. Условия образования.
- •54. Метаморфические горные породы. Анатексис.
- •55. Осадочные горные породы. Классификация. Условия образования.
- •56. Литогенез.
- •57. Обломочные осадочные породы. Глины. Их классификация.
- •58. Хемогенные и органогенные осадочные горные породы.
- •59. Магматизм. Магматический способ образования минералов в природе.
- •60. Интрузивный (см. 59 вопрос)
- •62. Форма зерен в полнокристаллической магматической породе.
- •63. (См. 60.) Вулканы и их продукты. Магма и лава.
- •64. Типы вулканических извержений
- •65. Строение вулканов. Вулканы мира.
- •71. Гейзеры.
- •73. Месторождение полезных ископаемых. Классификация.
- •74. Металлические полезные ископаемые.
- •76. Минералогия и промышленность.
- •80. Полезные ископаемые Нижегородской области
20. Внутренне строение Земли. Дифференциация земного вещества.
Дифференциация земного вещества и выделение ядра — это самый мощный на Земле процесс и главный внутренний движущий механизм развития нашей планеты (второй — развитие биосферы). Он протекает в мантии: вещество, облегченное удалением металлов, поднимается к земной коре, а более тяжелое опускается. Так в мантии возникают конвекционные токи. В верхней мантии они замыкаются. Здесь на глубинах от 100 до 350 км, особенно в пределах 100—150 км, сочетание температуры и давления таково, что вещество находится в размягченном или расплавленном состоянии. Этот слой плавления и повышенной активности называется астеносферой, иногда — волноводом. В составе современной мантии около 8% приходится на железо (30% его опустилось в ядро), но и этого количества вполне достаточно для продолжения дифференциации вещества и обеспечения тектонической активности нашей планеты по крайней мере на 1,5—2,0 млрд. лет.
Закон биогенной миграции атомов (или закон Вернадского): миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов. Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности — эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов. В будущем это послужит причиной очень отрицательных изменений, которые приобретают способность саморозвиваться и становятся глобальными, неуправляемыми (опустынивание, деградация грунта, вымирание тысяч видов организмов). С помощью этого закона можно сознательно и активно предотвращать развитие таких отрицательных явлений, руководить биогеохимическими процессами, используя «мягкие» экологические методы.
21. Литосфера и земная кора. Строение. Астеносфера.
Астеносфера — (от др.-греч. asthees — слабый и др.-греч. σφαῖρα) верхний пластичный слой верхней мантии Земли называемый также слой Гутенберга. Астеносфера выделяется по понижению скоростей сейсмических волн. Выше астеносферы залегает литосфера — твёрдая оболочка Земли. Граница между литосферой и астеносферой может лежать на глубине от 4 (под рифтами) до 200 (под кратонами) км.
Океаническая кора
Океаническая кора состоит главным образом из базальтов[источник не указан 619 дней]. Согласно теории тектоники плит, она непрерывно образуется в срединно-океанических хребтах, расходится от них и поглощается в мантию в зонах субдукции. Поэтому океаническая кора относительно молодая, и самые древние её участки датируются поздней юрой.
Толщина океанической коры практически не меняется со временем, поскольку в основном она определяется количеством расплава, выделившегося из материала мантии в зонах срединно-океанических хребтов. До некоторой степени влияние оказывает толщина осадочного слоя на дне океанов. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.
В рамках стратификации Земли по механическим свойствам, океаническая кора относится к океанической литосфере. Толщина океанической литосферы, в отличие от коры, зависит в основном от её возраста. В зонах срединно-океанических хребтов астеносфера подходит очень близко к поверхности, и литосферный слой практически полностью отсутствует. По мере удаления от зон срединно-океанических хребтов толщина литосферы сначала растет пропорционально её возрасту, затем скорость роста снижается. В зонах субдукции толщина океанической литосферы достигает наибольших значений, составляя 120-130 километров. Средняя толщина земной коры от 5 до 70 км
Пониженная вязкость астеносферы обусловлена, по-видимому, высокой температурой, приводящей, как полагают, к частичному выплавлению базальтовой магмы. В астеносфере происходит перетекание вещества, которое вызывает вертикальные и горизонтальные тектонические движения блоков литосферы. Флюиды и магма, проникающие в земную кору из астиносферы, принимают участие в формировании залежей полезных ископаемых астеносферы играет важную роль в эндогенных процессах, протекающих в земной коре (магматизм, метаморфизм и т.п.).
Континентальная кора
Континентальная кора имеет трёхслойное строение. Верхний слой представлен прерывистым покровом осадочных пород, который развит широко, но редко имеет большую мощность. Большая часть коры сложена под верхней корой — слоем, состоящим главным образом из гранитов и гнейсов, обладающим низкой плотностью и древней историей. Исследования показывают, что большая часть этих пород образовались очень давно, около 3 миллиардов лет назад. Ниже находится нижняя кора, состоящая из метаморфических пород — гранулитов и им подобных.