
- •1. Электрический заряд. Электризация тел. Закон сохранения электрического заряда. Закон Кулона. Точечный заряд.
- •2. Напряжённость электростатического поля. Принцип суперпозиции полей.
- •3. Поток вектора напряжённости. Поле диполя. Теорема Гаусса для электростатического поля в вакууме.
- •4. Напряжённость поля равномерно заряженной бесконечной плоскости; двух бесконечно параллельных плоскостей; сферической поверхности; объёмно заряженного шара.
- •5. Циркуляция вектора напряжённости электростатического поля. Работа электростатического поля. Потенциал – энергетическая характеристика электростатического поля.
- •6. Напряжённость – градиент потенциала. Эквипотенциальные поверхности.
- •7. Вычисление разности потенциалов по напряжённости поля для бесконечной плоскости, параллельных плоскостей; для сферической поверхности, объёмно заряженного шара, бесконечного цилиндра.
- •11. Проводники в электростатическом поле. Электростатическая индукция.
- •12. Уединённый проводник, электроёмкость уединённого проводника. Конденсаторы. Типы конденсаторов (плоские, цилиндрические, сферические). Параллельное и последовательное соединение конденсаторов.
- •13. Энергия электростатического поля. Плотность энергии.
- •14. Электрический ток, условия существования. Сила тока и плотность тока.
- •15. Сторонник силы, эдс и напряжение.
- •16. Закон Ома для участка цепи. Сопротивление проводников. Закон Ома в дифференциальной форме (вывод). Закон Ома для неоднородного участка цепи.
- •17. Закон Джоуля-Ленца. Работа и мощность тока.
- •18. Правила Кирхгофа.
- •19. Магнитная индукция. Линии магнитной индукции. Закон Био-Савара-Лапласа.
- •20. Расчёт индукции магнитного поля для прямого тока, кругового тока.
- •21. Закон Ампера. Взаимодействие параллельных токов.
- •22. Сила Лоренца, действующая на движущийся заряд.
- •23. Циркуляция вектора индукции магнитного поля в вакууме. Магнитное поле соленоида.
- •24. Теорема Гаусса для индукции магнитного поля. Поток вектора магнитной индукции.
- •25. Работа по перемещению проводника в магнитном поле.
- •26. Закон электромагнитной индукции (Закон Фарадея).
- •27. Индуктивность контура. Явление самоиндукции.
- •28. Токи при замыкании и размыкании цепи (вывод для размыкания).
- •29. Взаимная индукция, трансформатор, коэффициент трансформации и кпд.
- •30. Энергия магнитного поля.
- •34. Колебательный контур. Превращение энергии в колебательном контуре
- •35. Свободные электромагнитные колебания, их характеристики. Уравнение свободных гармонических колебаний и его решение.
- •37. Вынужденные электромагнитные колебания. Уравнение вынужденных колебаний и его решение. Резонанс.
- •38. Вихревое электрическое поле и ток смещения.
- •40. Уравнение электромагнитной волны. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.
- •43. Интерференция света. Принцип Гюйгенса.
- •44. Дифракция света. Дифракционная решётка.
- •45. Дисперсия света. Нормальная и аномальная дисперсии.
- •46. Поляризация света. Закон Малюса.
20. Расчёт индукции магнитного поля для прямого тока, кругового тока.
1.
Магнитное поле прямого тока — тока,
текущего по тонкому прямому проводу
бесконечной длины (рис.165). В произвольной
точке А,
удаленной от оси проводника на расстояние
R,
векторы dB от всех элементов тока имеют
одинаковое направление, перпендикулярное
плоскости чертежа («к вам»). Поэтому
сложение векторов dB можно заменить
сложением их модулей. В качестве
постоянной интегрирования выберем угол
(угол между векторами dl
и r),
выразив через него все остальные
величины. Из рис.165 следует, что
(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна
Так как угол для всех элементов прямого тока изменяется в пределах от 0 до , то, согласно (110.3) и (110.4),
Следовательно, магнитная индукция поля прямого тока
2. Магнитное поле в центре кругового проводника с током. Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sin =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),
Тогда
Следовательно,
магнитная индукция поля в центре
кругового проводника с током
21. Закон Ампера. Взаимодействие параллельных токов.
Закон
Ампера устанавливает, что на проводник
с током, помещенный в однородное магнитное
поле, индукция которого В, действует
сила, пропорциональная силе тока и
индукции магнитного поля:
Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2; (рис), расстояние между которыми равно R. Каждый из проводников создает магнитное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Ток I1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора B1 определяется правилом правого винта, его модуль по формуле (110.5) равен
22. Сила Лоренца, действующая на движущийся заряд.
Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой
23. Циркуляция вектора индукции магнитного поля в вакууме. Магнитное поле соленоида.
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В):
циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной 0 на алгебраическую сумму токов, охватываемых этим контуром:
где
n
— число проводников с токами, охватываемых
контуром L
произвольной формы. Каждый ток учитывается
столько раз, сколько раз он охватывается
контуром. Положительным считается ток,
направление которого образует с
направлением обхода по контуру
правовинтовую систему; ток противоположного
направления считается отрицательным.
Например, для системы токов, изображенных
на рис.,
Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l, имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида — неоднородным и очень слабым.
Для нахождения магнитной индукции В выберем замкнутый прямоугольный контур ABCDA, как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно , равна