
- •1. Электрический заряд. Электризация тел. Закон сохранения электрического заряда. Закон Кулона. Точечный заряд.
- •2. Напряжённость электростатического поля. Принцип суперпозиции полей.
- •3. Поток вектора напряжённости. Поле диполя. Теорема Гаусса для электростатического поля в вакууме.
- •4. Напряжённость поля равномерно заряженной бесконечной плоскости; двух бесконечно параллельных плоскостей; сферической поверхности; объёмно заряженного шара.
- •5. Циркуляция вектора напряжённости электростатического поля. Работа электростатического поля. Потенциал – энергетическая характеристика электростатического поля.
- •6. Напряжённость – градиент потенциала. Эквипотенциальные поверхности.
- •7. Вычисление разности потенциалов по напряжённости поля для бесконечной плоскости, параллельных плоскостей; для сферической поверхности, объёмно заряженного шара, бесконечного цилиндра.
- •11. Проводники в электростатическом поле. Электростатическая индукция.
- •12. Уединённый проводник, электроёмкость уединённого проводника. Конденсаторы. Типы конденсаторов (плоские, цилиндрические, сферические). Параллельное и последовательное соединение конденсаторов.
- •13. Энергия электростатического поля. Плотность энергии.
- •14. Электрический ток, условия существования. Сила тока и плотность тока.
- •15. Сторонник силы, эдс и напряжение.
- •16. Закон Ома для участка цепи. Сопротивление проводников. Закон Ома в дифференциальной форме (вывод). Закон Ома для неоднородного участка цепи.
- •17. Закон Джоуля-Ленца. Работа и мощность тока.
- •18. Правила Кирхгофа.
- •19. Магнитная индукция. Линии магнитной индукции. Закон Био-Савара-Лапласа.
- •20. Расчёт индукции магнитного поля для прямого тока, кругового тока.
- •21. Закон Ампера. Взаимодействие параллельных токов.
- •22. Сила Лоренца, действующая на движущийся заряд.
- •23. Циркуляция вектора индукции магнитного поля в вакууме. Магнитное поле соленоида.
- •24. Теорема Гаусса для индукции магнитного поля. Поток вектора магнитной индукции.
- •25. Работа по перемещению проводника в магнитном поле.
- •26. Закон электромагнитной индукции (Закон Фарадея).
- •27. Индуктивность контура. Явление самоиндукции.
- •28. Токи при замыкании и размыкании цепи (вывод для размыкания).
- •29. Взаимная индукция, трансформатор, коэффициент трансформации и кпд.
- •30. Энергия магнитного поля.
- •34. Колебательный контур. Превращение энергии в колебательном контуре
- •35. Свободные электромагнитные колебания, их характеристики. Уравнение свободных гармонических колебаний и его решение.
- •37. Вынужденные электромагнитные колебания. Уравнение вынужденных колебаний и его решение. Резонанс.
- •38. Вихревое электрическое поле и ток смещения.
- •40. Уравнение электромагнитной волны. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.
- •43. Интерференция света. Принцип Гюйгенса.
- •44. Дифракция света. Дифракционная решётка.
- •45. Дисперсия света. Нормальная и аномальная дисперсии.
- •46. Поляризация света. Закон Малюса.
43. Интерференция света. Принцип Гюйгенса.
Интерфере́нция
све́та — перераспределение интенсивности
света в
результате наложения (суперпозиции)
нескольких световых
волн.
Это явление сопровождается чередующимися
в пространстве максимумами и минимумами
интенсивности. Её распределение
называется интерференционной картиной.
при
рассмотрении вопросов интерференции
оперируют понятием когерентности волн.
Волны называют когерентными, если
разность фаз этих волн не зависит от
времени. В общем случае говорят, что
волны частично когерентны. При этом
поскольку существует некоторая
зависимость
от
времени, интерференционная картина
изменяется во времени, что приводит к
ухудшению контраста либо к исчезновению
полос вовсе. При этом в рассмотрении
задачи интерференции, вообще говоря и
не монохроматического (полихроматического)
излучения, вводят понятие комплексной
степени когерентности
.
Интерференционное соотношение принимает
вид
Оно называется общим законом интерференции стационарных оптических полей.
Дифракционная решётка — оптический прибор, действие которого основано на использовании явлениядифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Виды решёток
Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.
Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.
Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.
Если
известно число штрихов (
),
приходящихся на 1 мм решётки, то период
решётки находят по формуле:
мм.
Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:
где
—
период решётки,
—
угол максимума данного цвета,
—
порядок максимума, то есть порядковый
номер максимума, отсчитанный от центра
картинки,
—
длина волны.
Если
же свет падает на решётку под углом
,
то:
Одной
из характеристик дифракционной решётки
является угловая
дисперсия.
Предположим, что максимум какого-либо
порядка наблюдается под углом φ для
длины волны λ и под углом φ+Δφ — для
длины волны λ+Δλ. Угловой дисперсией
решётки называется отношение D=Δφ/Δλ.
Выражение для D можно получить если
продифференцировать формулу дифракционной
решётки
Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.