
- •1. Электрический заряд. Электризация тел. Закон сохранения электрического заряда. Закон Кулона. Точечный заряд.
- •2. Напряжённость электростатического поля. Принцип суперпозиции полей.
- •3. Поток вектора напряжённости. Поле диполя. Теорема Гаусса для электростатического поля в вакууме.
- •4. Напряжённость поля равномерно заряженной бесконечной плоскости; двух бесконечно параллельных плоскостей; сферической поверхности; объёмно заряженного шара.
- •5. Циркуляция вектора напряжённости электростатического поля. Работа электростатического поля. Потенциал – энергетическая характеристика электростатического поля.
- •6. Напряжённость – градиент потенциала. Эквипотенциальные поверхности.
- •7. Вычисление разности потенциалов по напряжённости поля для бесконечной плоскости, параллельных плоскостей; для сферической поверхности, объёмно заряженного шара, бесконечного цилиндра.
- •11. Проводники в электростатическом поле. Электростатическая индукция.
- •12. Уединённый проводник, электроёмкость уединённого проводника. Конденсаторы. Типы конденсаторов (плоские, цилиндрические, сферические). Параллельное и последовательное соединение конденсаторов.
- •13. Энергия электростатического поля. Плотность энергии.
- •14. Электрический ток, условия существования. Сила тока и плотность тока.
- •15. Сторонник силы, эдс и напряжение.
- •16. Закон Ома для участка цепи. Сопротивление проводников. Закон Ома в дифференциальной форме (вывод). Закон Ома для неоднородного участка цепи.
- •17. Закон Джоуля-Ленца. Работа и мощность тока.
- •18. Правила Кирхгофа.
- •19. Магнитная индукция. Линии магнитной индукции. Закон Био-Савара-Лапласа.
- •20. Расчёт индукции магнитного поля для прямого тока, кругового тока.
- •21. Закон Ампера. Взаимодействие параллельных токов.
- •22. Сила Лоренца, действующая на движущийся заряд.
- •23. Циркуляция вектора индукции магнитного поля в вакууме. Магнитное поле соленоида.
- •24. Теорема Гаусса для индукции магнитного поля. Поток вектора магнитной индукции.
- •25. Работа по перемещению проводника в магнитном поле.
- •26. Закон электромагнитной индукции (Закон Фарадея).
- •27. Индуктивность контура. Явление самоиндукции.
- •28. Токи при замыкании и размыкании цепи (вывод для размыкания).
- •29. Взаимная индукция, трансформатор, коэффициент трансформации и кпд.
- •30. Энергия магнитного поля.
- •34. Колебательный контур. Превращение энергии в колебательном контуре
- •35. Свободные электромагнитные колебания, их характеристики. Уравнение свободных гармонических колебаний и его решение.
- •37. Вынужденные электромагнитные колебания. Уравнение вынужденных колебаний и его решение. Резонанс.
- •38. Вихревое электрическое поле и ток смещения.
- •40. Уравнение электромагнитной волны. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.
- •43. Интерференция света. Принцип Гюйгенса.
- •44. Дифракция света. Дифракционная решётка.
- •45. Дисперсия света. Нормальная и аномальная дисперсии.
- •46. Поляризация света. Закон Малюса.
38. Вихревое электрическое поле и ток смещения.
Э
лектрическое
поле не связано непосредственно с
электрическими зарядами,
и его линии напряженности не могут на
них начинаться и кончаться. Они вообще
нигде не начинаются и не кончаются, а
представляют собой замкнутые линии,
подобные линиям индукции магнитного
поля. Это так называемое вихревое
электрическое
поле.Вихревое
электрическое поле порождается переменным
магнитным полем. Вихревое эл. поле не
связано с зарядом, линии напряжённости
представляют собой замкнутые кривые.
В массивных проводниках переменное
магнитное поле порождает вихревое
электрическое поле, а то в свою очередь
вихревые токи (индукционные токи
Фуко).
Согласно Максвеллу, если всякое
переменное магнитное поле возбуждает
в окружающем пространстве вихревое
электрическое поле, то должно существовать
и обратное явление: всякое изменение
электрического поля должно вызывать
появление в окружающем пространстве
вихревого магнитного поля. Для установления
количественных соотношений между
изменяющимся электрическим полем и
вызываемым им магнитным полем Максвелл
ввел в рассмотрение так называемый ток
смещения.
39.
Уравнения Максвелла для электромагнитного
поля.
Уравнения Максвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное полеи его связь с электрическими зарядами и токами в вакууме и сплошных средах.
полная система уравнений Максвелла в интегральной форме:
В еличины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды):
где 0 и 0 — соответственно электрическая и магнитная постоянные, и — соответственно диэлектрическая и магнитная проницаемости, — удельная проводимость вещества.
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
Для стационарных полей (E=const и B=const) уравнения Максвелла примут вид
т.е. источниками электрического поля в данном случае являются только электрические заряды, источниками магнитного — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрическое и магнитное поля.
полная система уравнении Максвелла в дифференциальном форме (характеризующих поле в каждой точке пространства):
40. Уравнение электромагнитной волны. Энергия электромагнитной волны. Вектор Умова-Пойнтинга.
Уравнение
где E0 и Н0 — соответственно амплитуды напряженностей электрического и магнитного полей волны, — круговая частота волны, k=/v — волновое число, — начальные фазы колебаний в точках с координатой х=0. В уравнениях (162.7) и (162.8) одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят в одинаковых фазах.
---энергия, вектор У.-П.--- Возможность обнаружения электромагнитных воли указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл и wм, электрического и магнитного полей:
Учитывая
выражение (162.4), получим, что плотности
энергии электрического и магнитного
полей в каждый момент времени одинаковы,
т. е. wэл
= wм.
Поэтому
Умножив плотность энергии w на скорость v распространения волны в среде ,получим модуль плотности потока энергии:
Tax как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора [ЕН] совпадает с направлением переноса энергии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнитной энергии называется вектором Умова — Пойнтинга:
Вектор S направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.