
- •2. Строение нейрона. Классификация нейронов по количеству отростков. Классификация нейронов по функциям.
- •3. Глиальных клетки. Строение и функции в деятельности мозга.
- •4. Строение мембраны. Мембранные поры и проницаемость. Натрий-калиевый насос. Мембранные потенциалы, роль ионных насосов в формировании потенциала покоя.
- •5. Потенциал действия, Роль ионов натрия и калия в генерации потенциала действия Механизмы проведения возбуждения по нервному волокну.
- •6. Синапсы, классификация, структурно-функциональная организация.
- •7. Химические синапсы, свойства, механизмы передачи.
- •8. Медиаторы нервной системы.
- •9. Рефлекторный принцип функционирования цнс, классификация рефлексов, рефлекторная дуга, рефлекторное кольцо.
- •10. Торможение в нервных сетях (пре- и постсинаптическое, реципрокное и возвратное).
- •Виды спинальных рефлексов.
- •13. Ствол головного мозга – функции и рефлексы. Серотонинергические, норадреналинергические и дофамиергические нейроны.
- •14. Рефлекторная функция среднего мозга, участие среднего мозга в осуществлении зрительных и слуховых рефлексов. Вентральное поле покрышки среднего мозга, дофамиергические нейроны среднего мозга.
- •16. Роль базальных ганглиев в интегративной деятельности мозга. Афферентные и эфферентные связи, функциональные особенности.
- •18. Гипоталамус. Участие гипоталамуса в регуляции вегетативных функций целого организма.
- •19. Миндалевидный комплекс, перегородка, гиппокамп и их свойства.
- •20. Современные представления о стрессе и адаптации. Основные положения концепции г. Селье и их развитие.
- •22. Интегративные функции нервной системы. Ассоциативное и неассоциативное обучение. Физиологическое значение условных рефлексов. Формы памяти. Функции новой коры.
- •23. Латерализация функций головного мозга. Интеллектуальные функции коры. Область Вернике. Область Брока.
7. Химические синапсы, свойства, механизмы передачи.
Химические синапсы. Структурно представлены пресинаптической частью, синаптической щелью и постсинаптической частью. Пресинаптическая часть химического синапса образуется расшире¬нием аксона по его ходу или окончания . В пресинаптической части имеются агранулярные и гранулярные пузырьки. Пузырьки (кванты) содержат медиатор. В пресинаптическом расширении находятся митохондрии, обеспечивающие синтез медиатора, гранулы гликогена и др. При многократном раздражении пресинаптического окончания запасы медиатора в синаптических пузырьках истощаются. Считают, что мелкие гранулярные пузырьки содержат норадреналин, крупные — другие катехоламины. Агранулярные пузырьки содержат ацетилхолин. Медиаторами возбуждения могут быть также производные глутаминовой и аспарагиновой кислот.
Синаптические контакты могут быть между аксоном и дендритом (аксодендритические), аксоном и сомой клетки (аксосоматические), аксонами (аксоаксональные), дендритами (дендродендритические), дендритами и сомой клетки.
Действие медиатора на постсинаптическую мембрану заключается в повышении ее проницаемости для ионов Na+. Возникновение потока ионов Na+ из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП) (см. рис. 2.19).
Для синапсов с химическим способом передачи возбуждения характерны синоптическая задержка проведения возбуждения, длящаяся около 0,5 мс, и развитие постсинаптического потенциала (ПСП) в ответ на пресинаптический импульс. Этот потенциал при возбуждении проявляется в деполяризации постсинаптической мембраны, а при торможении — в гиперполяризации ее, в результате чего развивается тормозной постсинаптический потенциал (ТПСП). При возбуждении проводимость постсинаптической мембраны увеличивается.
ВПСП возникает в нейронах при действии в синапсах ацетил холина, норадреналина, дофамина, серотонина, глутаминовой кислоты, вещества Р.
ТПСП возникает при действии в синапсах глицина, гамма-аминомасляной кислоты. ТПСП может развиваться и под действием медиаторов, вызывающих ВПСП, но в этих случаях медиатор вызывает переход постсинаптической мембраны в состояние гиперполяризации.
Для распространения возбуждения через химический синапс важно, что нервный импульс, идущий по пресинаптической части, полностью гасится в синаптической щели. Однако нервный импульс вызывает физиологические изменения в пресинаптической части мембраны. В результате у ее поверхности скапливаются синаптические пузырьки, изливающие медиатор в синаптическую щель.
Переход медиатора в синаптическую щель осуществляется путем экзоцитоза: пузырек с медиатором соприкасается и сливается с пресинаптической мембраной, затем открывается выход в синаптическую щель и в нее попадает медиатор. В покое медиатор попадает в синаптическую щель постоянно, но в малом количестве. Под влиянием пришедшего возбуждения количество медиатора резко возрастает. Затем медиатор перемещается к постсинаптической мембране, действует на специфические для него рецепторы и образует на мембране комплекс медиатор—рецептор. Данный комплекс изменяет проницаемость мембраны для ионов К+ и Na+, в результате чего изменяется ее потенциал покоя.
В зависимости от природы медиатора потенциал покоя мембраны может снижаться (деполяризация), что характерно для возбуждения, или повышаться (гиперполяризация), что типично для торможения. Величина ВПСП зависит от количества выделившегося медиатора и может составлять 0,12—5,0 мВ. Под влиянием ВПСП деполяризуются соседние с синапсом участки мембраны, затем деполяризация достигает аксонного холмика нейрона, где возникает возбуждение, распространяющееся на аксон.