Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нейрофизиология.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
338.43 Кб
Скачать

5. Потенциал действия, Роль ионов натрия и калия в генерации потенциала действия Механизмы проведения возбуждения по нервному волокну.

Потенциал действия - разновидность биопотенциала, возникающего на мембране электровозбудимых клеток в ответ на раздражение электрическим полем, химическим или другим стимулом. При этом мембрана возбудимой клетки способна увеличивать свою проницаемость к ионам натрия, калия, кальция.

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована — её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности — бо́льшее количество отрицательно заряженных частиц (анионов).

  2. Мембрана обладает избирательной проницаемостью — её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Непроникающие через мембрану отрицательно заряженные ионы (анионы) внутри аксона. Внутри аксона много отрицательно заряженных ионов, которые не могут проходить через мембранные каналы: анионы белковых молекул и многих органических фосфатных, а также сульфатных соединений и др. Поскольку эти ионы не могут покинуть аксон, любой недостаток положительных ионов внутри клетки приводит к избытку непроникающих через мембрану отрицательных ионов. Следовательно, анионы ответственны за отрицательный заряд внутри волокна при наличии общего дефицита положительно заряженных ионов калия и других положительных ионов.

Ионы кальция. Мембраны почти всех клеток организма имеют кальциевый насос, подобный натриевому насосу, а в некоторых клетках ионы кальция совместно с ионами натрия (или вместо них) участвуют в развитии потенциала действия. Кальциевый насос, как и натриевый, перекачивает ионы кальция изнутри клеточной мембраны наружу (или внутрь эндоплазматического ретикулума клетки), создавая градиент концентрации ионов кальция, равным примерно 10000 раз. При этом внутри клетки концентрация кальция составляет около 10-7 М по сравнению с внешней концентрацией, равной примерно 10-3 М.

Кроме того, имеются электроуправляемые кальциевые каналы. Эти каналы несколько проницаемы как для ионов натрия, так и для ионов кальция. Когда они открыты, оба иона поступают внутрь волокна, поэтому эти каналы также называют Ca2+/Na+ -каналами. Кальциевые каналы активируются медленно, на их активацию требуется примерно в 10-20 раз больше времени, чем для натриевых каналов. В связи с этим их называют медленными каналами (в противоположность натриевым каналам, называемым быстрыми каналами).

Множество кальциевых каналов представлено в сердечной и гладких мышцах. По существу, в некоторых типах гладких мышц быстрых натриевых каналов почти нет, поэтому потенциалы действия связаны практически полностью с активацией медленных кальциевых каналов.

Повышенная проницаемость натриевых каналов при недостатке ионов кальция. Концентрация ионов кальция во внеклеточной жидкости также оказывает существенное влияние на уровень потенциала, при котором происходит активация натриевых каналов. В условиях недостатка ионов кальция натриевые каналы активируются при очень небольшом повышении мембранного потенциала от нормы (сильно отрицательного уровня). Следовательно, нервное волокно становится высоковозбудимым, временами спонтанно разряжаясь повторными импульсами без раздражения. В действительности, лишь при падении концентрации ионов кальция на 50% ниже нормы в некоторых периферических нервах появляются спонтанные разряды, часто приводящие к мышечной тетании. Иногда это приводит к летальному исходу из-за тетанического сокращения дыхательных мышц.

Влияние ионов кальция на натриевые каналы, возможно, объясняется тем, что эти ионы связываются с внешней частью белковой молекулы натриевого канала. Положительные заряды ионов кальция могут менять электрическое состояние канального белка, в результате уменьшается уровень потенциала, необходимый для открытия ворот для натрия.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты; безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.