
Кварки, или откуда берётся масса
Лекция Дмитрия Дьяконова
Источник: Полит.ру, 16 сентября 2010
М
ы
публикуем расшифровку лекции доктора
физ.-мат.наук, зав. сект ором Петербургского
института ядерной физики РАН Дмитрия
Дьяконова, прочитанной 10 июня 2010 года
в Политехническом музее в рамках проекта
“Публичные
лекции Полит.ру”.
Текст лекции
Я буду рассказывать о самом фундаментальном уровне организации материи, как мы его понимаем сегодня. Я расскажу о фундаментальных частицах, из которых всё состоит — кварках и других, о видах взаимодействия между ними и о том, что все взаимодействия построены по одному принципу. Я объясню, что всё в мире есть “связанные состояния”. Наконец, я постараюсь пояснить, откуда берётся масса всего, что мы видим вокруг, включая нас самих. Я закончу перечислением самых глубоких “тёмных” вопросов. Вот план моего рассказа — см. слайд 1.
Слайд 1
Мы знаем со школы, что вещество, включая живое, состоит из молекул, а молекулы — из атомов. В свою очередь атомы состоят из маленького по размерам, но тяжёлого ядра, вокруг которого витают лёгкие электроны. Ядро склеено сильным притяжением протонов и нейтронов — см. слайд 2.
Слайд 2
Наконец, протоны и нейтроны состоят, каждый, из трёх кварков. На этой картинке я обозначил, что бывают u-кварки, d-кварки и s-кварки. u — это от слова “up”, d — от слова “down”, а s — от слова “strange”. Есть ещё три других сорта кварков, о которых я скажу дальше. В старину протоны и нейтроны называли элементарными частицами, когда не понимали их структуры. Но последние 50 лет мы, в общем, знаем их структуру, мы знаем, что протоны и нейтроны сделаны из кварков. Поэтому называть протоны и нейтроны элементарными частицами язык не поворачивается. Тем не менее, поскольку они, действительно, такие маленькие, протоны и нейтроны иногда по-прежнему называют “элементарными частицами”. По-настоящему элементарными являются кварки.
Д
митрий
Дьяконов
(фото А. Чеснокова)
Протоны, нейтроны и другие частицы, которых довольно много, потому что можно по-разному комбинировать сорта кварков, называются “барионы”. Каждый из них состоит из трёх кварков того или иного сорта. Есть ещё другие частицы, которые называют “мезоны”, они обязательно состоят из одного кварка и одного анти-кварка, который я на рисунке обозначил штриховкой. Эта картина довольно старая, она создана, в основном, великим американским физиком Гелл-Манном (Gell-Mann, 1964), который, кстати, в пожилом возрасте полностью бросил физику несмотря на то, что он, действительно, великий человек, получил Нобелевскую премию. Но он бросил физику и ушёл в лингвистику. И вот года два назад, мне говорили, он приезжал в Москву на лингвистический конгресс.
Борис Долгин: Да, он помогал Сергею Старостину и его ученикам.
Дмитрий Дьяконов: Слово “кварк” ввёл в физику именно Гелл-Манн, и вообще он придумал много разных смешных названий, которые я буду по мере надобности употреблять. Гелл-Манн взял слово “кварк” из книги “Поминки по Финнегану” Джойса. Это книга-ребус, там почти все непонятно. В частности, один герой говорит: три кварка для мястера Марка, по-английски “three quarks for Muster Mark”. Кто был в Германии или в Скандинавских странах, знают, что кварк — это просто творог, можно пойти в магазин и купить кварк. И совсем недавно я прочел, что это слово, оказывается, славянского происхождения и буквально происходит от слова “творог”, оно появилось в немецком языке довольно поздно, где-то в XIV веке. Вот у вас Зализняк читал лекцию, надо было у Зализняка спросить про кварк.
Ещё я здесь сбоку нарисовал наше изобретение, чтобы намекнуть, что наука не остановилась на 1964 годе. Мы с коллегами рассчитали, что должно быть более сложное образование из пяти кварков, которое так и назвали “пентакварком”. Я поставил рядом с ним вопрос, потому что есть эксперименты, где его видят, их довольно много, но есть эксперименты, где его не видят, их ещё больше. Поэтому пока ситуация не ясна, но готовьтесь к тому, что, возможно, скоро к этому семейству ещё добавятся пентакварки.
Вот это у меня самый загруженный слайд 3. Мы через него продерёмся, а дальше будут картинки, анимации, то есть будет проще. Я сейчас спустился на самый элементарный уровень того, что мы знаем. Есть частицы двух типов. Одни называются упомянутые кварки, их шесть сортов или типов: u — от up, d — от down, c — от слова charm, s — от слова strange, t — от слова top, а b — сами понимаете — bottom. Итак, имеется шесть сортов кварков, при этом, по-видимому, здесь full stop, т.е. больше никаких других кварков нет. Не то, что мы какие-то сорта кварков ещё не открыли, а есть экспериментальные и теоретические доводы, что больше никаких сортов нет.
Слайд 3
И есть другие частицы, которые тоже идут такой троицей, и они называются лептонами. Из них наиболее известные — это электрон, и частичка, которая называется нейтрино, она не имеет электрического заряда.
Природа почему-то не поскупилась и изготовила электрон в трёх копиях, ещё имеется два лептона, которые называются мюон и тау-лептон. И каждому заряженному лептону соответствует свое собственное нейтрино, причем это всё — разные частицы! Впрочем, копии электрона гораздо тяжелее его. Здесь я выписал массы этих частиц, пользуясь довольно странной единицей, — не граммами, не килограммами, а мега-электрон-вольтами (МэВ). Почему я не использую килограммы для обозначения массы? Потому что масса, скажем, протона и нейтрона составляет порядка 10-27 кг, что, конечно, очень мало. Ясно, что с такими мелкими единицами обращаться неудобно. Величина 1 МэВ или, если полностью, мега-электрон-вольт — это та энергия, которую приобретает электрон, если он проходит разность потенциалов в миллион вольт. Почему я в энергетических единицах меряю массу — потому что Эйнштейн написал небезызвестную формулу: Е=mc?. Эта формула говорит, что если у тела есть масса, то его энергия в покое есть mc?. Благодаря этой формуле, в физике элементарных частиц часто меряют массу в единицах МэВ, это удобно. Более примечательны относительные величины: электрон весит половину этой единицы МэВ, что в 2000 раз меньше массы протона и нейтрона. Следующий лептон (мюон) весит в 200 раз больше, а последний (тау-лептон) в 3600 раз больше, т.е. он даже тяжелее протона.
Теперь вернемся к кваркам. Кварки делятся на две группы: одна — это u,d,s — сравнительно лёгкие, u-кварк всего в 8 раз тяжелее электрона. Чепуха, да? d-кварк тоже лёгкий, s-кварк какой-то промежуточный, а вот эти три последних c,t,b очень тяжёлые. Причем, какая удивительная штука, они даже тяжелее, чем сам протон. Протон сделан из кварков, но он сделан из лёгких кварков, а есть ещё отдельные объекты, которые тяжелее, чем составной протон, причём намного тяжелее, t-кварк — совсем тяжёлый. Соответственно, физика частиц, составленных из лёгких кварков, очень отличается от физики частиц, состоящих из тяжёлых кварков. Возвращаясь на слайд 2, видим, что протон сделан из двух u-кварков и одного d-кварка, а нейтрон, который нейтральный, сделан из двух d-кварков и одного u-кварка. Это стабильные частицы, а вот, например, этот гражданин под названием лямбда-гиперон состоит из u, d и ещё s кварка. Вот такой имеется зверинец.
Материя устроена наподобие матрёшки: открываешь большую матрёшку (молекулу) — там атом, открываешь атом — там ядро и электроны, в ядре — протоны и нейтроны, а в последних — кварки. Это последняя, цельная матрёшка, как и электрон. Сегодня считается, что кварки и лептоны — то, что приведено на слайде 3, — уже не имеет внутренней структуры.
Есть одно чрезвычайно важное обстоятельство, отличающее кварки от лептонов. Каждый из приведенных здесь кварков существует в трёх ипостасях. Кварков каждого сорта на самом деле по три штуки. Эту новую, дополнительную характеристику кварка тот же Гелл-Манн назвал “цветом”. К нашему обычному цвету — красному, зеленому, синему — это не имеет никакого отношения. Это просто такое словечко, чтобы нам жилось веселее. Соответственно, наука, которая изучает взаимодействие кварков, называется квантовая хромодинамика. Она “хромо” не потому, что она обращается с обычными цветами, а потому что она намекает на это словечко “цвет”, который характеризует кварки.
Теперь фундаментальные силы — см. слайд 4. Я немного упрощаю, но во всех популярных книжках написано то, что у меня на этом слайде, — что фундаментальных взаимодействий четыре. Есть гравитация, закон Ньютона: все тела друг к другу притягиваются с силой, пропорциональной массам и обратно пропорциональной квадрату расстояния. Мы говорим, что переносчиком этого взаимодействия является гравитон. Такая безмассовая частичка, то есть не имеющая массы, она всегда распространяется со скоростью света, поэтому гравитация распространяется со скоростью света. Она обеспечивает то, что есть закон притяжения Ньютона.