
- •1. Понятие машина из курса тмм. Виды машин
- •2. Строение механизмов (звенья и цепи их виды, пары их классы)
- •3. Определение степени подвижности механизмов, лишние степени свободы, избыточные связи.
- •4. Принципы образования механизмов по Ассуру. Группы Ассура.
- •5. Последовательность структурного анализа механизмов. Замена в плоских механизмах высших кинематических пар низшими.
- •5. Продолжение
- •6. Основные задачи кинематического анализа механизмов. Аналитический метод исследования.
- •7. Кинематический анализ рычажных механизмов методом планов
- •8. Кинематический анализ рычажных механизмов методом диаграмм.
- •9. Синтез плоских механизмов с низшими парами . Свойства шарнирного четырехзвенника .
- •9. Продолжение
- •10.Кинематический анализ зубчатых механизмов с неподвижными осями.
- •11. Кинематический анализ зубчатых механизмов с подвижными осями.
- •12.Классификация зубчатых механизмов по различным признакам. Передаточные отношения.
- •13. Зубчатые механизмы с подвижными осями, основные виды и их назначение. Метод Виллиса.
- •14.Основные задачи и условия синтеза планетарных передач.
- •15. Основные задачи силового анализа механизмов. Классификация сил действующих в механизме.
- •15. Продолжение
- •16. Механические характеристики машин, примеры для машин двигателей и исполнительных машин.
- •16. Продолжение 1
- •16. Продолжение 2
- •17. Силы инерции, их определение для тел с вращательным, поступательным и сложным движением.
- •18. В чем заключается условие кинетостатической определимости кинематических цепей? Последовательность проведения силового анализа.
- •19. Основные задачи силового анализа механизмов. Последовательность силового анализа механизмов методом планов на примере.
- •20.Метод Жуковского для определения уравновешивающей силы, целесообразность его использования.
- •21. Динамическая модель машинного агрегата, для чего ее используют. Приведение сил и моментов сил к звену приведения.
- •23.Уравнение движения механизма при установившимся движении.
- •24.Режимы движения машины. Неравномерность движения звена приведения при установившемся движении
- •26.27 Все про трение
- •26, 27. Продолжение
- •28. Что такое кпд? Определение кпд механизма с последовательным соединением звеньев.
- •29.Определение кпд механизма с параллельным соединением звеньев и винтовой пары.
- •30. Основная теорема зацепления, проанализировать ее следствия.
- •31. Построение эвольвенты. Свойства эвольвенты и эвольвентного зацепления зубчатых колес.
- •33.Осн. Методы изгот-ния зубчатых колес. Параметры исх. Контура.
- •34.Параметры зубчатого зацепления. Качественные показатели зубчатого зацепления.
- •34. Продолжение
- •35. 36 Смещение режущего инструмента при нарезании зубчатого колеса. Заострение зуба при смещении
- •37. Назначение, классификация, геометрия и кинематика червячных передач.
- •37. Продолжение
- •38. Внутренние зацепление, способы нарезания зубьев, геометрия, определение передаточного отношения
- •39. Пространственные зубчатые передачи. Условия применения, геометрические параметры.
- •40.41.Назначение, основные параметры, классификация и структура кулачковых механизмов.
- •40,41. Продолжение
- •42. Синтез кулачковых механизмов с поступательным толкателем
- •42. Продолжение
26.27 Все про трение
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
1.Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения;
2.Трение качения — момент сил, возникающий при качении одного из двух контактирующих (взаимодействующих) тел относительно другого;
При отсутствии относительного движения двух контактирующих тел и наличии сил, стремящихся осуществить такое движение, в ряде ситуаций возникает.
3.Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.
В физике взаимодействия трение принято разделять на:
1.сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
2.жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
3.смешанное, когда область контакта содержит участки сухого и жидкостного трения;
4.граничное, когда в области контакта могут содержатся слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.
В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы
26, 27. Продолжение
трения принципиально не поддаются описанию с помощью методов классической механики.
Трение в механизмах и машинах:
В большинстве традиционных механизмов (ДВС, автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной , и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности.
Сцепление с поверхностью:
Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля с поверхностью дороги. В частности, для увеличения величины этого сцепления разрабатываются специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья, сильнее прижимающие машину к трассе.