
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
99. Функция регрессии, стандартные модели функции регрессии. (25)
Функция регрессии – ожидаемое значение случайной переменной y, вычисленное при заданном значении переменной x.
Функция регрессии в эконометрике интерпретируется как выраженный математическим языком закон, по которому изменяется эндогенная переменная в ответ на изменения экзогенной переменной (без воздействия случайных возмущений).
Простейшие модели функции регрессии в эконометрике:
линейная функция
квадратичная функция
степенная функция
экспоненциальная (показательнаяыраженретируется как онометрикееменной, вычисленное при заданном значении переменной.в (МНК). мо также подтвердить качество мод) функция
логарифмическая функция
В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.
Простая (парная) регрессия представляет собой регрессию между двумя переменными — у и х, т.е. модель вида:
где у — зависимая переменная (результативный признак);
х – независимая, или объясняющая, переменная (признак-фактор).
Примером модели парной регрессии является инвестиционная модель Самуэльсона-Хикса, имеет 2 переменных (It, ΔYt-1)
Множественная регрессия соответственно представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида:
100. Тестирование гомоскедастичности случайного остатка в модели.
Равенство дисперсии в наблюдениях, вторая предпосылка теоремы Гаусса-Маркова.
Гипотеза(1):
Шаг 1. Уравнения наблюдений объекта следует упорядочить по возрастанию суммы модулей значений предопределенных переменных модели (2),
т.е. по возрастанию значений
Шаг
2. По первым
упорядоченным
уравнениям наблюдений объекта вычислить
МНК-оценки параметров модели и величину
где
- МНК-оценка случайного возмущения
Шаг
3. По последним
упорядоченным
уравнениям наблюдений вычислить
МНК-оценки параметров модели и величину
ESS,
которую обозначим
Шаг
4. Вычислить
статистику
.
Шаг
5. Задаться
уровнем значимости
и с помощью функции FРАСПОБР
Excel
при количествах степеней свободы
,
где
определить (1-
-квантиль,
распределения Фишера.
Шаг 6. Принять гипотезу (1), если справедливы неравенства
Т.е. при справедливых неравенствах случайный остаток в модели (2) полагать гомоскедастичными. В противном случае гипотезу (1) отклонить как противоречащую реальным данным и сделать вывод о гетероскедастичности случайного остатка в модели (2).
101. Тестирование отсутствия автокорреляции случайного остатка.
Проверяется
третья предпосылка теоремы Гаусса-Маркова,
которая говорит о независимости случайных
переменных в уравнениях наблюдений,
т.е.ковариация между случайными
переменными равна 0: Cov(
)=0
i,j = 1,2,3…,n
; i
j
Невыполнение третьей предпосылки теоремы Гаусса – Маркова, или наличие взаимосвязи случайных переменных в модели называется автокорреляцией.
Для тестирования автокорреляции в регрессионных моделях наиболее часто применяется тест Дорбина-Уотсона (DW).
Рассмотрим случай взаимного влияния случайных возмущений в соседних наблюдениях (текущ., предшеств.).
В основе теста лежат следующие предпосылки:
1) случайные возмущения подчиняются нормальному закону распределения
2) случайные возмущения подчиняются следующему правилу
(гомоскедастичный остаток)
Статистика DW, c помощью которой тестируется модель на автокорреляцию, имеет вид:
где t-номер
наблюдения, n-количество
наблюдений
Найдем область определения статистики DW: (раскроем квадрат разности в числителе)
Таким образом, критическое значение статистика DW зависит не только от значения доверительной вероятности, количества регрессоров в модели и числа наблюдений, но еще и от абсолютных значений регрессоров.
Данное обстоятельство не дает получить единое значение для любой выборки (модели) критическое значение .
В каждом конкретном случае необходимо искать свое , что неудобно.
Выяснилось, что можно найти отрезок [ ], внутри которого находятся все возможные значения . Тогда для принятия решения относительно наличия или отсутствия автокорреляции предлагается следующая схема DW:
1) строится отрезок [0;4], на котором отмечаются значения ;
2) Возможны следующие варианты (куда попадает реальное значение DW):
а) если реальное значение DW попало в отрезки от [ ] и [ ], то автокорреляция существует (что плохо, т.к. случайные переменные влияют друг на друга) и гипотеза об отсутствии автокорреляции отклоняется)
б) если DW попало в отрезок [ ,то автокорреляции нет, т.е. гипотеза принимается
в) если реальное значение DW находится в отрезках [ ] и [ ], то невозможно сказать есть или нет автокорреляция, т.е. значение DW попало в зону неопределенности (единств.способ раскрыть неопределенность воспользоваться другой выборкой, в качестве измененной выборки может служить исходная с измененной последовательностью наблюдений).
Алгоритм теста DW:
Шаг 1. по результатам наблюдений оценить модель линейной регрессии
Шаг 2 . для каждого оцененного уравнения, рассчитывается (оценивается) случайные возмущения
Шаг 3. по соответствующим статистическим таблицам находим значении и , через k и n (доверит.вероятность 0,95)
Шаг 4. Проверяем в какой интервал на отрезке попал DW.