
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
75. Коэффициент детерминации в парной регрессионной модели. 22
В качестве меры влияния регрессора на формирование значения эндогенной переменной в парной регрессионной модели вводится коэффициент детерминации = , где RSS – регрессионная сумма квадратов, TSS – общая сумма квадратов, ESS – ошибка. Коэффициент детерминации равен доле эмпирической дисперсии переменной у, которая в рамках обучающей выборки объясняется ее регрессором х.
0<= <=1. Если RSS=TSS, ESS=0, следовательно, на эндогенную переменную влияют только регрессоры (идеальная ситуация). Если ESS =TSS, RSS =0, следовательно, на эндогенную переменную влияют только случайные возмущения.
показывает, какая доля изменения зависимой переменной обусловлена изменением объясняющей переменной. Коэффициент детерминации показывает процент влияния регрессора на эндогенную переменную.
Замечания:
имеет смысл только
при наличии свободного коэффициента
В случае парной линейной регрессии
(x,y) = квадрату коэффициента корреляции между переменными х и у.
76. Fтест качества спецификации парной регрессионной модели. 28
В качестве меры влияния регрессора на формирование значения эндогенной переменной в парной регрессионной модели вводится коэффициент детерминации .
- величина случайная, так как его значение вычисляется по случайной выборке, следовательно, для тестирования гипотезы о том, что выбранный регрессор не оказывает влияние на формирование значения эндогенной переменной, необходимо создать случайную переменную, закон распределения которой нам известен.
Если
известен
то
в качестве такой переменной используется
Fтест =
Чтобы проверить качество спецификации Fтест сравнивается с Fкритическое. Для подсчета Fкритическое в Excel используется FРАСПОБР, нужно знать уровень значимости
α=1-Рдоверит = 1-0,95=0,05 и 2 степени свободы k и n-k-1.
Если Fтест <= Fкритическое, то принимается гипотеза о том, что регрессор х не влияет на формирование эндогенной переменной.
Если Fтест>= Fкритическое, то принимается альтернативная гипотеза о том, что регрессор существенно влияет на формирование величины у.
77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
Эконометрическая модель оперирует со случайными переменными. Это приводит к тому, что наличие случайных переменных в правой части влияет на левую (левая часть приобретает случайный характер).
Т.к. случайная величина характеризуется присущим ей законом распределения (для непрерывных случайных величин - это функция монотонности), закон распределения случайных величин содержит параметры.
III этап – это их (параметров) оценка (приближённое вычисление)
Рассматриваем эконометрическую модель в виде изолированного уравнения:
Спецификация (5.1) содержит k экзогенных переменных (регрессоров), тогда значение случайного возмущения:
Параметры любого закона распределения и его количественные характеристики – это const, но оценки этих параметров и их количественных характеристик есть величины случайные
К оценкам параметров предъявляется 2 основных требования:
несмещённость
эффективность
Оценка параметров закона распределения называется несмещённой, если её математическое ожидание совпадает со значением параметра:
На практике можно предложить множество процедур расчёта несмещённых оценок параметров.
Пример:
Пусть рассматривается некоторая случайная переменная величина x c известным законом распределения. Необходимо подобрать процедуру среднего значения этой величины.
Есть выборка из двух наблюдений Х :
Для элемента выборки должны выполняться условия:
1) все элементы выборки независимые случайные величины
2) все элементы выборки имеют одинаковый закон распределения, совпадающий с законом распределения самой случайной величины
Известно,
что
Найдём альтернативные процедуры, которые также помогут получить несмещённые оценки среднего значения.
Пусть такая процедура выглядит
Математическое ожидание такой оценки с учётом статистических свойств выборки равно:
Отсюда
видно, что математические ожидания
случайной величины х и z
(среднее значение), полученное по формулам
(5.4) и (5.6), будут совпадать, когда
Мы получим бесконечно количество процедур, которое обеспечивает несмещённые оценки среднего значения
Наилучшую процедуру оценки показывает минимальная дисперсия оценки.
Эффективной среди всех несмещённых оценок называется та, которая имеет минимальную дисперсию (σ→min)(выбирается та процедура, которая даёт минимальный разброс значения оценки).
Найдём,
при каких значениях
дисперсия выражения (5.5) будет минимальной
Нахождения минимума функции W приравняем к нулю производную
⇒
⇒