
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
64.Регрессионные модели с переменной структурой.
В процессе исследования в линейные регрессионные модели включают так называемые фиктивные (бинарные) переменные, как правило, когда хотят исследовать еще влияние качественных признаков. Бинарные (фиктивные) переменные принимают обычно только два значения: 0 – если этот признак отсутствует и 1 – если этот признак присутствует. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина.
Мы имеем структурную форму упрощенной модели спроса-предложения нормального ценного блага на конкурентном рынке.
Требуется
составить спецификацию модели, которая
позволяет объяснять величину спроса
на конкурентном рынке нормального
ценного блага значениями его цены p,
уровнем душевого дохода потребителя х
и фактором сезонности(кварталом года).
Решение:
Наблюдения за уровнями спроса многих
товаров и услуг свидетельствуют, что
при прочих равных условиях значения
спроса зависят от фактора сезонности.
Например, спрос на автомобили весной-
летом выше. Чем осенью-зимой. Как отразить
в функции спроса качественный фактор
сезонности? Познакомимся с приемом
отражения в эконометрических моделях
влияния на эндогенные переменные
качественных факторов. Этот прием
заключается в использовании в модели
фиктивных экзогенных переменных. В
модели, обсуждаемой в данной задаче,
влияние фактора сезонности на уровень
спроса отразим путем включения в линейную
функцию спроса трех фиктивных переменных
и
.
=
(1-для первого квартала, 0- для других
кварталов)
=
(1- для второго квартала, 0- для других
кварталов)
= (1- для третьего квартала, 0- для других кварталов)
Получаем:
Это и есть модель уровня спроса на нормальное ценное благо с учетом фактора сезонности. Заметим ,что структурная форма совпадает с приведенной. Эндогенная переменная объясняется пятью экзогенными переменными, из которых три- фиктивные. Бинарный характер (1 или 0) фиктивных переменных фактически влечет изменение структуры уровня модели в зависимости от значений этих переменных. Так при =1 (первый квартал) модель спроса принимает вид:
А,
скажем , в ситуации четвертого квартала,
когда
В силу данного обстоятельства модели вида с бинарными фиктивными переменными называются моделями с переменной структурой.
Можем сказать, что для моделирования влияния на эндогенную переменную качественного фактора, который способен принимать k состояний9 например, четыре состояния- зима, весна, лето и осень), следует использовать фиктивные бинарные переменные . Количество k-1 фиктивных переменных должны быть на единицу меньше числа k возможных уровней качественного фактора, при котором все фиктивные переменные равны нулю , именуется базовым состоянием. Так для данного примера служит базовым состоянием служит четвертый квартал.
65.Спецификация простейших моделей временных рядов.
Рассмотрим данную спецификацию через спецификацию эконометрической модели Самуэльсона-Хикса:
(4.1)
Она предназначена для объяснения текущего уровня инвестиций It величиной ΔYt-1= Yt-1 -Yt-2 цепного прироста ВВП за предыдущий период времени. Заметим, что в модели (4.1) величина ΔYt-1 играет роль экзогенной переменной, a It — эндогенной переменной.
Спецификация (4.1) содержит два неизвестных параметра: b, σu (4.2)
Параметр b, называемый акселератором, численно равен увеличению ΔIt уровня It текущих инвестиций вследствие увеличения на единицу цепного прироста, ΔYt-1 ВВП за предыдущий период. Параметр σu имеет смысл среднего квадратического разброса вокруг нуля возможных значений случайного возмущения vt, отражающего влияние на уровень текущих инвестиций It не определенных в модели (4.1) факторов. Можно сказать, что σu — это мера влияния на уровень текущих инвестиций It не идентифицированных в модели (4.1) факторов.
Оценим параметры (4.2) модели (4.1). Наилучшая оценка акселератора инвестиций b вычисляется в процессе решения линейного уравнения:
R
= S,
(4.4)
где:
Значение b, вычисленное по правилу (4.4), соответствует интуитивно ясному знаменитому принципу настройки моделей
называемому методом наименьших квадратов.
В
свою очередь, оценка
среднего
квадратического отклонения (СКО)
определяется по правилу
(4.7)
В нем
(4.8)
- это оценка случайного возмущения vt в период t. Величина п в знаменателе формулы (4.7) — это количество пар (It , AYt-i) значений переменных модели (4.1), по которым вычисляются оценки , ее неизвестных параметров (4.2). Наконец, вычитаемое (единица) в знаменателе формулы (4.7) — это количество оцениваемых коэффициентов в функции регрессии модели (4.1).