
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
48.(5)Схема построения эконометрических моделей. (22)
Построение эконометрических моделей состоит из нескольких этапов.
1. Спецификация или построение математической модели на основании данных.
2.Сбор статистических данных об объекте-оригинале в виде значений эндогенных и экзогенных переменных.
3.Оценивание неизвестных параметров модели с помощью обучающей выборки в результате которого мы получаем оценочное значение параметров и оценочное значение СКО. В результате этого мы получаем оцененную модель.
4.Проверка адекватности оцененной модели, т.е проверка соответствия построенной модели объекту-оригиналу с помощью контрольной выборки.
49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
Система состоит из равенств:1)y=a0+a1*x1+a2*x2+u; 2)E(u/x1,xt)=0; 3)E(u2/x1,x2)=r2u.x1,x2- экзоген перем, y-эндоген перемен.случ возмещен предполаг гомоскедастичн.спецификация содержит 4 параметра. это модель линейная эконометрич в виде изолир уравнений с несколькими объясняющ перемен или модель лин множ регрессии.эконом смысл коэф-ов а1 и а2-ожидаемые предельн знач перемен у по перемен х.это базовая модель,т.к.1)к такой модели мб приближенна практич любая эконометрич модель в виде изолир уравнения;2)поведен ур-ия в линейн моделях имеют такой же вид. эконометрич инвестиц модель Самуэльсона-Хикса явл частн случаем модели
Дана линейная эконометрическая модель со спецификацией вида
(5.1)
y – эндогенная переменная
- экзогенные переменные
- параметры
(5.1) – линейная эконометрическая модель в виде изолированного уравнения с несколькими объясняющими переменными или модель линейной множественной регрессии
Экономический смысл параметров - ожидаемые предельные значения переменной y по объясняющим переменным соответственно
Эконометрическая инвестиционная модель Самуэльсона-Хикса является частным случаем модели (5.1). Она является моделью парной регрессии, т.к. имеет 2 переменных (а именно: эндогенную и предопределённую )
Пусть мы располагаем информацией в виде конкретных значений экзогенных и эндогенной переменных модели (5.1)
при t = 1, 2,…., n
Порядок оценивания модели (5.1) состоит из следующих шагов:
Шаг 1. В столбце А листа Exel с первой строчки расположить значения эндогенной переменной y. В столбца В и С, начиная с первой строчки, записать значения экзогенных переменных соответственно
|
A |
B |
C |
D |
E |
F |
G |
1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
… |
… |
… |
… |
|
|
|
|
n |
|
|
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
n+2 |
|
|
|
|
|
|
|
n+3 |
|
|
|
|
|
|
|
n+4 |
|
|
|
|
|
|
|
n+5 |
|
|
|
|
|
|
|
Шаг 2. Активировать ячейку с адресом A(n+1) и на стандартной панели инструментов щёлкнуть мышью кнопку вставки функции .
Шаг 3. В диалоговом окне «Категория» выбрать «Статистические»; в диалоговом окне «Выберите функцию» - «Линейн»; щёлкнуть мышью по кнопке «ОК».
Шаг 4. В строчке «Известные_значения_y» диалогового окна указать (латиницей!) адрес А1:An диапазона значений эндогенной переменной , а в строчке «Известные_значения_х» - адрес В1:Сn диапазона известных значений предопределённых переменных .
Шаг 5. В строчку «Конст» диалогового окна занести (киррилицей!) слово «истина», либо цифру 1.
Замечание. Если в эту строку занести слово «ложь» либо цифру 0, то параметр модели (5.1) априорно получит значение 0.
Шаг 6. В строчку «Статистика» диалогового окна занести слово «истина» либо цифру 1 и щёлкнуть мышью по кнопке «ОК».
Шаг 7. Выделить мышью диапазон ячеек A(n+1):C(n+5)
Шаг 8. Щёлкнуть мышью по строке формул
Шаг 9. Нажать клавиши Ctrl+Shift+Enter
В итоге в выделенном диапазоне ячеек появятся результаты оценивания модели (5.1)
|
A |
B |
C |
D |
E |
F |
G |
1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
… |
… |
… |
… |
|
|
|
|
n |
|
|
|
|
|
|
|
n+1 |
|
|
|
|
|
|
|
n+2 |
|
|
|
|
|
|
|
n+3 |
|
|
# Н/Д |
|
|
|
|
n+4 |
F |
|
# Н/Д |
|
|
|
|
n+5 |
|
|
# Н/Д |
|
|
|
|