
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
40(28).Коэффициент корреляции и ковариации
(5.8)
(5.11) - Система нормальных уравнений для определения оценок параметров модели (5.8).
Систему уравнений (5.11) можно решить методом исключения переменных. Для этого достаточно выразить параметр через , подставив его во второе уравнение системы, откуда получен , затем уже подставить в первое уравнение.
В итоге:
Выражение (5.12) позволяет по известным значениям наблюдений переменных x и y вычислить оценки параметров модели парной регрессии.
Известно, что ковариация -
(5.13)
- числовая характеристика взаимосвязи пары случайных переменных x и y.
(взаимосвязь нефункциональная)
Дисперсия является частным случаем ковариации
Из (5.13) следует, что для вычисления ковариации нужно знать закон распределения случайных переменных x и y → P(x,y). Если он неизвестен, то ковариацию можно оценить по выборке из генеральной совокупности
XY, x , y
X = {
Y = { }
Оценкой ковариации служит величина выборочная:
в частном случае
С учётом (5.14), преобразовав (5.12) получим оценку параметра , т.е.
Преобразуем (5.15)
Таким образом, оценка параметра отличается от его [параметра ] истинного значения на величину отношения оценки ковариации регрессора и остатка к оценке дисперсии.
Отсюда видно, что, несмотря на то что случайное возмущение непосредственно не участвует в вычислении значения оценок параметра, оно существенно влияет на их [оценок параметров] качество, а именно, если случайное возмущение коррелирует с регрессором, то значение оценки становится смещённым. (Напоминаю: оценка параметров закона распределения называется несмещённой, если её математическое ожидание совпадает со значением параметра: .)
Корреля́ция (от лат. correlatio — соотношение, взаимосвязь), корреляционная зависимость — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин
Коэфф-т корреляции
41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
Рассмотрим спец-цию (паутинообразная)
С
истема
из уравнений :
=a0+a1pt+a2xt+Ut
=b0+b1*pt-1+Vt
=
a1<0, a2>0 b1>0
Xt+1\Xt >1 => возрастает, Xt+1\Xt <1 => уменьшается. Этот фактор как и многие другие в спецификации отсут-ют, т.е. неидентифицированы. Отсутсвие в спецификации модели пустьи второстепенных факторов не избавляет от влияния их на тек. эндогенные пер-ые модели => объективное существования факторов говорит о том что ур-ие специф-ции будет нарушено. Для того чтобы отразить влияние неучтенных факторов принято включать в поведенческие уравнения модели случайные переменные, значения которых рассеяны вокруг 0, их принято называть случ-ми возмущ илиостатками. Ut & Vt в данном случае случ-возмущ. Рассеянные вокруг 0 случ-ые перем-ые Ut , Vt отражают влияние на соответсвующие энд. перем-ые модели , , pt неучтенных,неидентых факторов, располож. в правой части 1го ур-ия лин фун-ции 2х перем-ых.
a0+a1pt+a2xt – функция регрессии (в явном виде) служит моделью экономического закона,согласно кот. меняется ур-нь српоса в ответ на изменение цены благаи дохода потребителя.
b0+b1*pt-1- ф-ция регрессии иявляется моделью эк.з-на согласно кот.изменяется предложение блага в ответ на изменение его лаговой цены.
Представим спецификацию в компактом виде (матричном)
матричный
вид структурной формы любой динам.
реересс модели, состоящей из одноврем.лин.
урав-ий
-
вектор случ.возм-ий.
-
вектор тек.энд. перем-ых,
-
вектор предопр. перем-ых.
Компактная
запись привед. формы модели имеет вид-
где М-матрица коэф-тов предопр-ых
перем-ых в приведенной форме,
-
вектор случ-ых возмущ . в прив форме.
=
А^(-1)*
Запишем ур-ие спроса модели след.образом: Ut= - (a0+a1pt+a2xt), где (a0+a1pt+a2xt) функция регрессии, а pt и xt регрессоры. Ut зависит не только от неучтенных факторов но и от кол-ва регрессоров и от выбранной модели функции регрессии.
преобразование на примере делового цикла
Дано:
Ct= a0+a1 Yt-1 +Ut
It=b(Yt-1 –Yt-2)+Vt
Gt= gGt-1 +Wt
Yt=Ct+It+Gt
0<a1<1, b>0 , g>1
E(Ut|
Yt-1)=0, E(Ut^2|Yt-1)=
E(Vt|
Yt-1, Yt-2)=0, E(Vt^2|Yt-1, Yt-2)=
E(Wt|Gt-1)=0
, E(Wt^2| Gt-1)=
Ut,Vt,Wt-случ возмущ. Данная специф-ция эконометр. содели Сам-Хикса содержит 7 неизвестных параметров a0, a1,b,g, омега u , омега v, омега w. Случю возмущения включ-ся только в поведенческие ур-ия
ПРЕОБРАЗРВАЛИ ПУТЕМ ПОДСТАНОВКИ
Ct= a0+a1 Yt-1 +Ut
It=b(Yt-1 –Yt-2)+Vt
Gt= gGt-1 +Wt
Yt= a0+(a1+b)*Yt-1-bYt-2 + gGt-1+ (Ut+Vt+Wt)
0<a1<1, b>0 , g>1
это и есть прив форма данной модели.
а вектор =(Ut, Wt, Vt, Ut+Vt+Wt)т.
Данную матрицу М так же можно было вычислить по формуле М=- А^(-1)*В, где
В свою очередь вектор =(Ut, Wt, Vt, Ut+Vt+Wt)т. можно вычислить по формуле = А^(-1)* , где =(Ut,Vt,Wt,0)т- вектор случ возмущ. в струтктурной форме данной модели