
- •Эконометрика, её задача и метод. (20)
- •2. Линейная модель множественной регрессии. (30)
- •3. Структурная и приведённая формы спецификации эконометрических моделей (привести пример). (25)
- •4. Отражение в эконометрических моделях фактора времени. (25).
- •5. Схема построения эконометрических моделей. (22)
- •6. Отражение в модели влияния неучтённых факторов. (28)
- •7. Простейшие модели временных рядов. (30)
- •8.Структура экономических задач. Математическая модель объекта. (20)
- •9. Принципы спецификации эконометрических моделей. (20)
- •10. Преобразование динамической модели к приведённой форме (на примере «паутинообразной» модели спроса-предложения блага на конкурентном рынке). (30)
- •11. Компактная (матричная) запись структурной и приведённой форм динамической модели из одновременных линейных уравнений. (25)
- •12. Оценка параметров парной регрессионной модели методом мнк
- •13. Регрессионные модели с переменной структурой.
- •14. Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •15. Спецификация моделей со случайными возмущениями и преобразование их к приведенной форме.
- •16. Случайный вектор и его основные количественные характеристики.
- •17. Структурная форма упрощённой динамической макромодели.
- •18. Количественные характеристики взаимосвязи пары случайных переменных
- •19. Преобразование структурной формы упрощённой динамической макромодели к приведённой форме.
- •20. Условный закон распределения, условное математическое ожидание (функция регрессии) как оптимальный прогноз. (25)
- •21. Спецификация и компактная (матричная) запись структурной формы эконометрической модели делового цикла экономики.
- •22. Дифференциальный закон распределения, как характеристика случайной переменной.
- •Преобразование структурной формы модели Самуэльсона-Хикса к приведённой форме.
- •Порядок оценивания линейной модели множественной регрессии методом наименьших квадратов (мнк) в mExel.
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса.
- •26. Ожидаемое значение случайного вектора и ковариационная матрица. (23)
- •Эконометрическая модель Самуэльсона –Хикса государственных расходов.
- •Ковариация и коэффициент корреляции.
- •Преобразование структурной формы модели делового цикла экономики к приведённой форме.
- •Теорема Гаусса-Маркова
- •Составление спецификации модели временного ряда.
- •Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •Принцип построения матрицы а и в коэффициентов структурной формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели).
- •34. Алгоритм теста ГолдфелдаКвандта на наличие (отсутствие) гетероскедастичности случайных возмущений. (30)
- •35. Этапы построения эконометрических моделей. (20)
- •36.(79),(83). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •37. Принцип построения матрицы m коэффициентов приведённой формы компактной записи динамической модели из одновременных линейных уравнений (на примере упрощённой динамической макромодели). (20)
- •38. Схема Гаусса – Маркова. (30)
- •39(9). Принципы спецификации эконометрических моделей и их формы. (20)
- •40(28).Коэффициент корреляции и ковариации
- •41. Преобразование к приведённой форме эконометрических моделей со случайными возмущениями (на примере модели делового цикла экономики). (27)
- •42.(26)Ковариационная матрица и ожидаемое значение случайного вектора
- •43.Модели с бинарными фиктивными переменными (20)
- •45. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели). (30)
- •46. Спецификация и преобразование к приведённой форме динамических моделей. Лаговые и предопределённые переменные динамической модели.(20)
- •47(14). Ожидаемое значение случайной переменной, ее дисперсия и среднее квадратическое отклонение.
- •48.(5)Схема построения эконометрических моделей. (22)
- •49.Линейная модель множественной регрессии. Порядок ее оценивания методом наименьших квадратов в Excel.
- •50(64).Регрессионные модели с переменной структурой (фиктивные переменные)
- •51. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов линейной модели парной регрессии. (30)
- •52.Коэффициент детерминации в регрессионной модели.
- •54. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной и проверка адекватности оценённой модели.(30)
- •55. Тест Голдфелда-Квандта гомоскедастичности случайного возмущения в линейной модели множественной регрессии. (30)
- •56.Понятие статистической гипотезы. Процедура проверки статистической гипотезы.
- •57. Тест Дарбина-Уотсона на отсутствие автокорреляции случайного остатка в линейной модели множественной регрессии
- •58. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •59. Метод наименьших квадратов (мнк). Свойства оценок мнк
- •60.Схема построения эконометрических моделей
- •61(6).Отражение в модели влияния на объясняемые переменные неучтенных факторов(25)
- •62.Несмещённость оценок параметров
- •63.Спецификация простейших моделей временных рядов.
- •64.Регрессионные модели с переменной структурой.
- •65.Спецификация простейших моделей временных рядов.
- •66.Оценка параметров парной регрессионной модели методом наименьших квадратов.
- •68. Автокорреляция случайного возмущения. Причины. Последствия. 25
- •69. Статистические свойства оценок параметров парной регрессионной модели. 25
- •70. Фиктивные переменные: определение, назначение, типы. 25
- •71. Принципы спецификации эконометрических моделей. 22
- •72. Алгоритм проверки адекватности парной регрессионной модели. 28
- •73. Метод наименьших квадратов, алгоритм метода, условия применения.25
- •74. Алгоритм проверки значимости регрессора в парной регрессионной модели. 25
- •75. Коэффициент детерминации в парной регрессионной модели. 22
- •76. Fтест качества спецификации парной регрессионной модели. 28
- •77. Оценка параметров множественной регрессионной модели методом наименьших квадратов. 25
- •78.Теорема Гаусса-Маркова
- •79. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •80. Статистические свойства оценок параметров множественной регрессионной модели
- •81. Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. (25)
- •83( 36).(79). Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (27).
- •85. Причины и последствия автокорреляции случайного возмущения/
- •86. Коэффициент детерминации в множественной регрессионной модели.
- •87(3). Структурная и приведенная формы спецификации эконометрических моделей.(23)
- •88. Спецификация эконометрических моделей и оценивание параметров мнк.(23)
- •89. Применение фиктивных переменных при исследовании сезонных колебаний (привести пример). (25)
- •90. Алгоритм проверки значимости регрессора в парной регрессионной модели. (25)
- •91. Оценка дисперсии случайных возмущений модели множественной регрессии.
- •92.(72). Алгоритм проверки адекватности парной регрессионной модели. 28
- •93. Алгоритм оценки коэффициентов в модели Самуэльсона-Хикса.
- •94(73). Метод наименьших квадратов, алгоритм метода, условия применения.25
- •95. Качество спецификации модели. Проверка статистической гипотезы.
- •96. Гетероскедостичность и ее последствия.
- •Порядок действий при проверке статистических гипотез можно представить в виде следующего алгоритма:
- •98.Тестирование автокорреляции(25)
- •99. Функция регрессии, стандартные модели функции регрессии. (25)
- •100. Тестирование гомоскедастичности случайного остатка в модели.
- •101. Тестирование отсутствия автокорреляции случайного остатка.
- •102. Алгоритм поиска незначащих переменных в парной регрессионной модели.
- •103(106)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •104. Дисперсия и ковариация: их смысл и взаимосвязь,оценочные значения.
- •105(109). Алгоритм проверки статистической гипотезы. (25)
- •106(103)(110). Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •107. Эффективность и состоятельность оценок параметров.(25)
- •108. Алгоритм применения критерия Стъюдента для оценки статистических гипотез. (25)
- •109. Алгоритм проверки статистической гипотезы. (25)
- •110( 106)(103)(. Виды переменных в эконометрических моделях: эндогенные, экзогенные, датированные, лаговые, предопределенные (привести пример). (25)
- •111(115)Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •112. Принцип метода наименьших квадратов. (25)
- •113. Дроби Стъюдента и Фишера, как примеры искусственно созданных переменных для проверки статистических гипотез. (30)
- •114. Эконометрика, её задача и метод. (20)
- •115. Матричный вид приведённой формы динамической регрессионной модели из одновременных линейных уравнений (привести пример). (25)
- •116. Связь векторов случайных возмущений в структурной и приведённой формах (привести пример). (25)
- •117. Основные модели временных рядов. (25)
- •118. Матрица коэффициентов предопределённых переменных приведённой формы (привести пример). (25)
- •119. Динамическая модель из одновременных линейных уравнений (привести пример). (20)
- •120. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных. (30)
Ковариация и коэффициент корреляции.
(5.8)
(5.11) - Система нормальных уравнений для определения оценок параметров модели (5.8).
Систему уравнений (5.11) можно решить методом исключения переменных. Для этого достаточно выразить параметр через , подставив его во второе уравнение системы, откуда получен , затем уже подставить в первое уравнение.
В итоге:
Выражение (5.12) позволяет по известным значениям наблюдений переменных x и y вычислить оценки параметров модели парной регрессии.
Известно, что ковариация -
(5.13)
- числовая характеристика взаимосвязи пары случайных переменных x и y.
(взаимосвязь нефункциональная)
Дисперсия является частным случаем ковариации
Из (5.13) следует, что для вычисления ковариации нужно знать закон распределения случайных переменных x и y → P(x,y). Если он неизвестен, то ковариацию можно оценить по выборке из генеральной совокупности
XY,
x
,
y
X
= {
Y
= {
}
Оценкой ковариации служит величина выборочная:
в частном случае
С учётом (5.14), преобразовав (5.12) получим оценку параметра , т.е.
Преобразуем (5.15)
Таким образом, оценка параметра отличается от его [параметра ] истинного значения на величину отношения оценки ковариации регрессора и остатка к оценке дисперсии.
Отсюда видно, что, несмотря на то что случайное возмущение непосредственно не участвует в вычислении значения оценок параметра, оно существенно влияет на их [оценок параметров] качество, а именно, если случайное возмущение коррелирует с регрессором, то значение оценки становится смещённым. (Напоминаю: оценка параметров закона распределения называется несмещённой, если её математическое ожидание совпадает со значением параметра: .)
Корреля́ция (от лат. correlatio — соотношение, взаимосвязь), корреляционная зависимость — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин
Коэфф-т корреляции
Билет 29
Преобразование структурной формы модели делового цикла экономики к приведённой форме.
Смотри билет №23.
Билет №30
Теорема Гаусса-Маркова
Применение метода наименьших квадратов (МНК) к оценке параметров линейной модели не всегда позволяет получить состоятельные оценки (Напоминаю: состоятельные оценки - обладающие свойством несмещённости при больших объёмах выборки).
Для получения состоятельных оценок необходимо, чтобы они удовлетворяли ряду условий, эти условия сформулированы в теореме Гаусса-Маркова.
Теорема Гаусса-Маркова формулирует условия, при которых МНК позволяет получить наилучшие оценки параметров линейной модели множественной регрессии.
К.Ф Гаусс (1777-1855) – разработка МНК
А.А. Марков (1856-1922) – сформулировал условия, при которых МНК позволяет получить состоятельные оценки.
Сформулируем постановку задачи:
Имеем:
1) спецификацию модели в виде линейного уравнения множественной регрессии
(«
уравнение звёздочка»
*)
2) выборку из n наблюдений
Значения переменных в каждом наблюдении связаны между собой по правилу (*)
Следовательно,
(5.17)
Система уравнений (5.17) называется системой уравнений наблюдений или схемой Гаусса-Маркова.
В компактной (матричной) записи эта система имеет вид
В матрице Х в первом столбце единицы появляются только в тех случаях, когда спецификация содержит свободный параметр .
Если этот параметр отсутствует, то и в матрице Х этот столбец отсутствует.
Перейдём к задаче.
Необходимо
найти значение состоятельных оценок параметров моделей
оценку ошибки случайного возмущения
оценку наилучшего прогноза с помощью модели (5.17)
оценку ошибки прогноза эндогенных переменных
Предпосылки теоремы Гаусса-Маркова следующие:
1) математическое ожидание случайных возмущений во всех наблюдениях равно нулю
(5.20)
2) дисперсия случайных возмущений во всех наблюдениях одинакова и равна const . И свойство однородности случайных возмущений
(5.21)
3) ковариация между парами случайных возмущений в наблюдениях равна нулю
(5.22)
→ отсутствие автоковариации случайных возмущений
Неравенство нулю (≠0) есть автоковариация
4) ковариация между вектором-регрессором и вектором случайных возмущений равна нулю → регрессоры и случайные возмущения НЕ зависят друг от друга
.
(далее непонятная неведомая фигня)
Если матрица X неколлинеарна, т.е нет ни одного столбца, который можно было бы приставить в виде линейной комбинации других столбцов, то
1) наилучшая оценка вектора параметров линейной модели множественной регрессии вычисляется по правилу
=
(5.24) - она (оценка) соответствует
МНК
2) значение несмещённых оценок параметров
Ковариационная матрица параметров модели вычисляется
(5.25)
3) дисперсия случайного возмущения равна:
(5.26)
4)
наилучший прогноз по модели (5.17) в точке
+…+
(5.27)
5) оценка ошибки прогноза эндогенной переменной равна
Билет №31