- •Электрический заряд. Свойства электрического заряда. Закон Кулона.
- •Электрическое поле. Графическое изображение эп – линии напряжённости. Однородное электрическое поле.
- •Напряжённость электрического поля. Графическое изображение эп – линии напряжённости.
- •Работа электрического поля при перемещении электрического поля. Потенциал. Разность потенциала.
- •Вещество в электрическом поле.
- •Электроёмкость проводника. Конденсатор. Электроёмкость конденсатора. Типы конденсаторов. Энергия конденсатора.
- •Конденсатор. Соединения конденсаторов.
- •Билет №1 Электрический ток. Условия существования электрического тока. Действия электрического тока.
- •Билет №2 Характеристики электрического тока: сила тока, напряжение, электрическое сопротивление.
- •Билет №3 Источники тока. Сторонние силы. Электродвижущая сила.
- •Билет №4 Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от длины, сечения, материала, температуры. Сверхпроводимость.
- •Билет №5 Последовательное и параллельное соединение потребителей.
- •Билет №6 Электродвижущая сила. Закон Ома для полной цепи.
- •Билет №7 Работа электрического тока. Мощность электрического тока. Закон Джоуля – Ленца. Тепловое действие тока.
- •Билет №1 Классическая теория электронной проводимости металлов. Термоэлектрические явления.
- •Билет №2 Электропроводимость электролитов. Законы электролиза. Применение.
- •Билет №3 Электропроводимость газов. Несамостоятельный и самостоятельный газовые разряды. Газовые разряды в природе и технике.
- •Билет №4 Электрический ток в вакууме. Термоэлектронная эмиссия. Вакуумный диод. Вакуумный триод.
- •Билет №5 Собственная и примесная проводимости полупроводников. Зависимость проводимости полупроводников от внешних условий.
- •Билет №6 Электронно-дырочный переход. Полупроводниковый диод. Транзистор.
- •Билет №1 Магнитное поле. Взаимодействие токов. Опыт Ампера. Опыт Эрстеда. Магнитная индукция.
- •Билет №2 Магнитное поле. Графическое изображение – линии магнитной индукции. Правила буравчика.
- •Билет №3 Сила Ампера. Правило левой руки. Вращение рамки с током в магнитном поле.
- •Билет №4 Сила Лоренца. Правило левой руки. Движение частицы в магнитном поле.
- •Билет №5 Магнитная проницаемость среды. Диа-, пара-, ферромагнетики.
- •Билет №1 Явление электромагнитной индукции. Опыт Фарадея. Закон электромагнитной индукции. Правило Ленца.
- •Билет №2 Вихревое электрическое поле. Вихревые токи.
- •Билет №3 Явление самоиндукции. Эдс самоиндукции. Индуктивность. Энергия магнитного поля.
- •Билет №4 Явление электромагнитной индукции. Эдс в движущихся проводниках.
- •Билет №1 Колебательное движение и условия его возникновения. Гармонические колебания. Уравнение гармонического колебания и его график.
- •Билет №2 Механические волны. Продольные и поперечные волны. Характеристики волны.
- •Билет №1 Теория Максвелла. Электромагнитное поле. Электромагнитные волны, и их свойства.
- •Билет №2 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре.
- •Билет №3 Вынужденные электромагнитные колебания. Индукционный генератор: устройство, принцип действия.
- •Билет №4 Параметры переменного тока. Мгновенное, максимальное и действующее значение эдс, напряжения, силы тока. Индуктивность и ёмкость в цепи переменного тока. Электрический резонанс.
- •Билет №5 Трансформатор: устройство, принцип действия, применение, расчёт коэффициента трансформации и кпд.
- •Билет №6 Принципы радиосвязи.
- •Билет №7 Модель радиоприёмника.
- •Билет №1 История развития представлений о природе света. Корпускулярно-волновой дуализм. Скорость света.
- •Билет №2 Законы геометрической оптики. Светодиоды.
- •Билет №3 Линза. Построение изображения в линзах.
- •Билет №4 Интерференция света. Применение.
- •Билет №5 Дифракция света.
- •Билет №6 Дисперсия света. Цвета тел. Виды спектров. Спектральный анализ.
- •Билет №7
- •Билет №1 Квантовая Гипотеза Планка. Квантовая природа света.
- •Билет №2 Опыты а.Г. Столетова. Внешний фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна.
- •Билет №3 Внутренний фотоэффект. Применение фотоэффекта в технике.
- •Билет №4 Давление света. Опыт Лебедева. Эффект Комптона.
- •Билет №1 Модель атома Резерфорда-Бора. Излучение и поглощение энергии атомов. Происхождение спектров испускания и поглощения на основе теории Бора.
- •Билет №2 Экспериментальные методы регистрации заряженных частиц.
- •Билет №3 Естественная радиоактивность и её виды. Правила смещения. Закон радиоактивного распада.
- •Билет №4 Состав атомных ядер. Открытие протона и нейтрона. Радиоактивные изотопы и их применение.
- •Билет №5 Ядерные силы. Дефект массы. Энергия связи атомных ядер.
- •Билет №6 Элементарные частицы. Частицы и античастицы. Взаимное превращение вещества и поля.
- •Билет №7 Деление тяжёлых атомных ядер. Цепная ядерная реакция деления. Ядерные реакторы.
- •Билет №8 Термоядерный синтез и условия его осуществления.
Билет №7 Деление тяжёлых атомных ядер. Цепная ядерная реакция деления. Ядерные реакторы.
Деление тяжелых ядер. В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др. Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ. Основной интерес для ядерной энергетики представляет реакция деления ядра. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра.
Ядерная реакция — это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции. Ц епная ядерная реакция деления — это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием для развития цепной реакции деления является требование k > 1, где k — коэффициент размножения нейтронов, т. е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определенных критических параметров (критическая масса — 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова. Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. После аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой. Существуют ядерные реакторы, работающие на медленных нейтронах, но большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах.
