- •Электрический заряд. Свойства электрического заряда. Закон Кулона.
- •Электрическое поле. Графическое изображение эп – линии напряжённости. Однородное электрическое поле.
- •Напряжённость электрического поля. Графическое изображение эп – линии напряжённости.
- •Работа электрического поля при перемещении электрического поля. Потенциал. Разность потенциала.
- •Вещество в электрическом поле.
- •Электроёмкость проводника. Конденсатор. Электроёмкость конденсатора. Типы конденсаторов. Энергия конденсатора.
- •Конденсатор. Соединения конденсаторов.
- •Билет №1 Электрический ток. Условия существования электрического тока. Действия электрического тока.
- •Билет №2 Характеристики электрического тока: сила тока, напряжение, электрическое сопротивление.
- •Билет №3 Источники тока. Сторонние силы. Электродвижущая сила.
- •Билет №4 Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от длины, сечения, материала, температуры. Сверхпроводимость.
- •Билет №5 Последовательное и параллельное соединение потребителей.
- •Билет №6 Электродвижущая сила. Закон Ома для полной цепи.
- •Билет №7 Работа электрического тока. Мощность электрического тока. Закон Джоуля – Ленца. Тепловое действие тока.
- •Билет №1 Классическая теория электронной проводимости металлов. Термоэлектрические явления.
- •Билет №2 Электропроводимость электролитов. Законы электролиза. Применение.
- •Билет №3 Электропроводимость газов. Несамостоятельный и самостоятельный газовые разряды. Газовые разряды в природе и технике.
- •Билет №4 Электрический ток в вакууме. Термоэлектронная эмиссия. Вакуумный диод. Вакуумный триод.
- •Билет №5 Собственная и примесная проводимости полупроводников. Зависимость проводимости полупроводников от внешних условий.
- •Билет №6 Электронно-дырочный переход. Полупроводниковый диод. Транзистор.
- •Билет №1 Магнитное поле. Взаимодействие токов. Опыт Ампера. Опыт Эрстеда. Магнитная индукция.
- •Билет №2 Магнитное поле. Графическое изображение – линии магнитной индукции. Правила буравчика.
- •Билет №3 Сила Ампера. Правило левой руки. Вращение рамки с током в магнитном поле.
- •Билет №4 Сила Лоренца. Правило левой руки. Движение частицы в магнитном поле.
- •Билет №5 Магнитная проницаемость среды. Диа-, пара-, ферромагнетики.
- •Билет №1 Явление электромагнитной индукции. Опыт Фарадея. Закон электромагнитной индукции. Правило Ленца.
- •Билет №2 Вихревое электрическое поле. Вихревые токи.
- •Билет №3 Явление самоиндукции. Эдс самоиндукции. Индуктивность. Энергия магнитного поля.
- •Билет №4 Явление электромагнитной индукции. Эдс в движущихся проводниках.
- •Билет №1 Колебательное движение и условия его возникновения. Гармонические колебания. Уравнение гармонического колебания и его график.
- •Билет №2 Механические волны. Продольные и поперечные волны. Характеристики волны.
- •Билет №1 Теория Максвелла. Электромагнитное поле. Электромагнитные волны, и их свойства.
- •Билет №2 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре.
- •Билет №3 Вынужденные электромагнитные колебания. Индукционный генератор: устройство, принцип действия.
- •Билет №4 Параметры переменного тока. Мгновенное, максимальное и действующее значение эдс, напряжения, силы тока. Индуктивность и ёмкость в цепи переменного тока. Электрический резонанс.
- •Билет №5 Трансформатор: устройство, принцип действия, применение, расчёт коэффициента трансформации и кпд.
- •Билет №6 Принципы радиосвязи.
- •Билет №7 Модель радиоприёмника.
- •Билет №1 История развития представлений о природе света. Корпускулярно-волновой дуализм. Скорость света.
- •Билет №2 Законы геометрической оптики. Светодиоды.
- •Билет №3 Линза. Построение изображения в линзах.
- •Билет №4 Интерференция света. Применение.
- •Билет №5 Дифракция света.
- •Билет №6 Дисперсия света. Цвета тел. Виды спектров. Спектральный анализ.
- •Билет №7
- •Билет №1 Квантовая Гипотеза Планка. Квантовая природа света.
- •Билет №2 Опыты а.Г. Столетова. Внешний фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна.
- •Билет №3 Внутренний фотоэффект. Применение фотоэффекта в технике.
- •Билет №4 Давление света. Опыт Лебедева. Эффект Комптона.
- •Билет №1 Модель атома Резерфорда-Бора. Излучение и поглощение энергии атомов. Происхождение спектров испускания и поглощения на основе теории Бора.
- •Билет №2 Экспериментальные методы регистрации заряженных частиц.
- •Билет №3 Естественная радиоактивность и её виды. Правила смещения. Закон радиоактивного распада.
- •Билет №4 Состав атомных ядер. Открытие протона и нейтрона. Радиоактивные изотопы и их применение.
- •Билет №5 Ядерные силы. Дефект массы. Энергия связи атомных ядер.
- •Билет №6 Элементарные частицы. Частицы и античастицы. Взаимное превращение вещества и поля.
- •Билет №7 Деление тяжёлых атомных ядер. Цепная ядерная реакция деления. Ядерные реакторы.
- •Билет №8 Термоядерный синтез и условия его осуществления.
Билет №5 Трансформатор: устройство, принцип действия, применение, расчёт коэффициента трансформации и кпд.
Трансформатор — устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.
Он был изобретен П.Н.Яблочковым в 1878 г., а технический трансформатор впервые создал И.Ф.Усагин в 1882 г.
Работа трансформатора основана на явлении электромагнитной индукции. Простейший трансформатор (рис. 1) представляет собой две изолированные друг от друга катушки (обмотки), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем. Ток в первичной обмотке создает в сердечнике переменный магнитный поток, который возбуждает ЭДС самоиндукции в каждом витке первичной катушки (ΔΦ — изменение магнитного потока
через один виток за время Δt). Этот же магнитный поток пронизывает витки вторичной катушки и создает в каждом ее витке ЭДС индукции Если первичная обмотка имеет N1 витков, а вторичная N2 витков, то в обмотках индуцируются (без учетапотерь на рассеивание магнитного потока) соответственно электродвижущие силы
а их отношение т.е. возникающие в катушках ЭДС индукции (самоиндукции) пропорциональны числу витков в них:
Отношение числа витков в первичной обмотке к числу витков во вторичной называют коэффициентом
трансформации k . Если N2 > N1 (k < 1), то трансформатор называется повышающим, а если N2 < N1 (k > 1) — понижающим.
Коэффициент трансформации определяется обычно при холостом ходе трансформатора, т.е. при разомкнутой цепи вторичной обмотки. При рабочем ходе трансформатора происходит непрерывная передача энергии из первичной цепи во вторичную. Мощность, потребляемая в первичной цепи
а выделяемая на нагрузке Коэффициент полезного действия трансформатора
Не вся энергия, потребляемая от генератора, передается потребителю. При работе трансформатора имеются потери на нагревание обмоток трансформатора, на рассеивание магнитного потока в пространство, на вихревые токи Фуко в сердечнике и его перемагничивание. Для уменьшения этих потерь принимаются следующие меры: 1) обмотка низкого напряжения делается большего сечения, так как по ней проходит ток большей силы; 2) сердечник делают замкнутым, что уменьшает рассеивание магнитного потока; 3) сердечник делают из изолированных пластин для уменьшения токов Фуко и др. Благодаря этим мерам КПД современных трансформаторов достигает =95—99%, сдвиги фаз между колебаниями силы тока и напряжения близки к нулю
Билет №6 Принципы радиосвязи.
Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 г. русский физик А. Попов. Этот день считается днем рождения радио. Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн. Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле — сосредоточенным между пластинами конденсатора. Такой контур называется закрытым (рис. 44, а).
Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство. Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развернуты эти пластины, тем более свободно выходит электромагнитное поле в окружающее пространство (рис. 44, б). Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром (рис. 44, в). В действительности контур состоит из катушки и длинного провода — антенны.
Энергия излучаемых (при помощи генератора незатухающих колебаний) электромагнитных колебаний при одинаковой амплитуде колебаний силы тока в антенне пропорциональна четвертой степени частоты колебаний. На частотах в десятки, сотни и даже тысячи герц интенсивность электромагнитных колебаний ничтожно мала. Поэтому для осуществления радио- и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.
При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс — детектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания. С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов. Большую роль в современном морском флоте, авиации и космонавтике играет радиолокация. В основе радиолокации лежит свойство отражения волн от проводящих тел. (От поверхности диэлектрика электромагнитные волны отражаются слабо, а от поверхности металлов почти полностью.)
