- •Электрический заряд. Свойства электрического заряда. Закон Кулона.
- •Электрическое поле. Графическое изображение эп – линии напряжённости. Однородное электрическое поле.
- •Напряжённость электрического поля. Графическое изображение эп – линии напряжённости.
- •Работа электрического поля при перемещении электрического поля. Потенциал. Разность потенциала.
- •Вещество в электрическом поле.
- •Электроёмкость проводника. Конденсатор. Электроёмкость конденсатора. Типы конденсаторов. Энергия конденсатора.
- •Конденсатор. Соединения конденсаторов.
- •Билет №1 Электрический ток. Условия существования электрического тока. Действия электрического тока.
- •Билет №2 Характеристики электрического тока: сила тока, напряжение, электрическое сопротивление.
- •Билет №3 Источники тока. Сторонние силы. Электродвижущая сила.
- •Билет №4 Закон Ома для участка цепи. Сопротивление проводника. Зависимость сопротивления от длины, сечения, материала, температуры. Сверхпроводимость.
- •Билет №5 Последовательное и параллельное соединение потребителей.
- •Билет №6 Электродвижущая сила. Закон Ома для полной цепи.
- •Билет №7 Работа электрического тока. Мощность электрического тока. Закон Джоуля – Ленца. Тепловое действие тока.
- •Билет №1 Классическая теория электронной проводимости металлов. Термоэлектрические явления.
- •Билет №2 Электропроводимость электролитов. Законы электролиза. Применение.
- •Билет №3 Электропроводимость газов. Несамостоятельный и самостоятельный газовые разряды. Газовые разряды в природе и технике.
- •Билет №4 Электрический ток в вакууме. Термоэлектронная эмиссия. Вакуумный диод. Вакуумный триод.
- •Билет №5 Собственная и примесная проводимости полупроводников. Зависимость проводимости полупроводников от внешних условий.
- •Билет №6 Электронно-дырочный переход. Полупроводниковый диод. Транзистор.
- •Билет №1 Магнитное поле. Взаимодействие токов. Опыт Ампера. Опыт Эрстеда. Магнитная индукция.
- •Билет №2 Магнитное поле. Графическое изображение – линии магнитной индукции. Правила буравчика.
- •Билет №3 Сила Ампера. Правило левой руки. Вращение рамки с током в магнитном поле.
- •Билет №4 Сила Лоренца. Правило левой руки. Движение частицы в магнитном поле.
- •Билет №5 Магнитная проницаемость среды. Диа-, пара-, ферромагнетики.
- •Билет №1 Явление электромагнитной индукции. Опыт Фарадея. Закон электромагнитной индукции. Правило Ленца.
- •Билет №2 Вихревое электрическое поле. Вихревые токи.
- •Билет №3 Явление самоиндукции. Эдс самоиндукции. Индуктивность. Энергия магнитного поля.
- •Билет №4 Явление электромагнитной индукции. Эдс в движущихся проводниках.
- •Билет №1 Колебательное движение и условия его возникновения. Гармонические колебания. Уравнение гармонического колебания и его график.
- •Билет №2 Механические волны. Продольные и поперечные волны. Характеристики волны.
- •Билет №1 Теория Максвелла. Электромагнитное поле. Электромагнитные волны, и их свойства.
- •Билет №2 Колебательный контур. Свободные электромагнитные колебания. Превращение энергии в колебательном контуре.
- •Билет №3 Вынужденные электромагнитные колебания. Индукционный генератор: устройство, принцип действия.
- •Билет №4 Параметры переменного тока. Мгновенное, максимальное и действующее значение эдс, напряжения, силы тока. Индуктивность и ёмкость в цепи переменного тока. Электрический резонанс.
- •Билет №5 Трансформатор: устройство, принцип действия, применение, расчёт коэффициента трансформации и кпд.
- •Билет №6 Принципы радиосвязи.
- •Билет №7 Модель радиоприёмника.
- •Билет №1 История развития представлений о природе света. Корпускулярно-волновой дуализм. Скорость света.
- •Билет №2 Законы геометрической оптики. Светодиоды.
- •Билет №3 Линза. Построение изображения в линзах.
- •Билет №4 Интерференция света. Применение.
- •Билет №5 Дифракция света.
- •Билет №6 Дисперсия света. Цвета тел. Виды спектров. Спектральный анализ.
- •Билет №7
- •Билет №1 Квантовая Гипотеза Планка. Квантовая природа света.
- •Билет №2 Опыты а.Г. Столетова. Внешний фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна.
- •Билет №3 Внутренний фотоэффект. Применение фотоэффекта в технике.
- •Билет №4 Давление света. Опыт Лебедева. Эффект Комптона.
- •Билет №1 Модель атома Резерфорда-Бора. Излучение и поглощение энергии атомов. Происхождение спектров испускания и поглощения на основе теории Бора.
- •Билет №2 Экспериментальные методы регистрации заряженных частиц.
- •Билет №3 Естественная радиоактивность и её виды. Правила смещения. Закон радиоактивного распада.
- •Билет №4 Состав атомных ядер. Открытие протона и нейтрона. Радиоактивные изотопы и их применение.
- •Билет №5 Ядерные силы. Дефект массы. Энергия связи атомных ядер.
- •Билет №6 Элементарные частицы. Частицы и античастицы. Взаимное превращение вещества и поля.
- •Билет №7 Деление тяжёлых атомных ядер. Цепная ядерная реакция деления. Ядерные реакторы.
- •Билет №8 Термоядерный синтез и условия его осуществления.
Билет №1 Явление электромагнитной индукции. Опыт Фарадея. Закон электромагнитной индукции. Правило Ленца.
Известно, что электрический ток и его магнитное поле всегда существуют одновременно. Фарадей, зная о тесной связи между током и магнитным полем, был уверен, что с помощью магнитного поля можно создать в замкнутом проводнике электрический ток. Он провел многочисленные опыты и доказал это, открыв в 1831 г. явление электромагнитной индукции. Возникновение в замкнутом проводнике электрического тока, обусловленное изменением магнитного поля, называют явлением электромагнитной индукции. Полученный таким способом ток называют индукционным (наведенным), а создающую его э. д. с. называют э. д. с. индукции.
Опыты Фарадея. Рассмотрим один из опытов Фарадея, с помощью которых он открыл явление электромагнитной индукции.
1. Возьмем соленоид, соединенный с гальванометром, и будем вдвигать в него постоянный магнит. Оказывается, что при движении магнита стрелка гальванометра отклоняется. Если же магнит останавливается, то стрелка гальванометра возвращается в нулевое положение. То же самое получается при выдвижении магнита из соленоида или при надевании соленоида на неподвижный магнит. Такие опыты показывают, что индукционный ток возникает в соленоиде только при относительном перемещении соленоида и магнита. На основании опытов Фарадея можно сделать следующий вывод: индукционный ток (и э. д. с. индукции) в замкнутом контуре появляется только в том случае, когда изменяется магнитный поток, который проходит через площадь, охваченную контуром.
Закон (правило) Ленца для электромагнитной индукции: э. д. с. индукции создает в замкнутом контуре такой индукционный ток, который своим магнитным полем препятствует причине, вызывающей появление этой э. д. с.
Из закона Ленца можно установить, что энергия индукционного тока в проводнике получается за счет той энергии, которая затрачивается на преодоление противодействия магнитного поля индукционного тока. Например, если разомкнуть цепь катушки, изображенной на рис. 23.3, и подсчитать работу, нужную для того, чтобы вставить в нее и вынуть магнит определенное число раз, а затем повторить этот опыт при замкнутой цепи, то во втором случае работа будет заметно больше, чем в первом. Это объясняется тем, что в первом случае собственного магнитного поля вокруг катушки нет, так как в ней нет тока, а во втором случае поле есть. Лишняя работа во втором случае идет на преодоление противодействия этого поля и равна энергии индукционного тока в катушке. Нетрудно видеть, что с помощью явления электромагнитной индукции можно превращать механическую энергию в электрическую, а также передавать электрическую энергию из одной цепи в другую.
Э. д. с. индукции, возникающая в какой-либо цепи, прямо пропорциональна скорости изменения потокосцепления магнитного поля с этой цепью:
В этой формуле - время, за которое происходит изменение потокосцепления на .
Билет №2 Вихревое электрическое поле. Вихревые токи.
Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем. Работа сил вихревого электрического поля по перемещению электрических зарядов и является работой сторонних сил, источником ЭДС индукции. Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.
По теории Максвелла в пространстве, в котором изменяется магнитное поле, обязательно возникает электрическое поле с замкнутыми линиями напряженности, независимо от присутствия вещества. На рис. 23.8 прямые линии изображают изменяющееся магнитное поле с индукцией В, возрастающей (а) и убывающей (б), а замкнутые линии — возникшее электрическое поле, напряженность которого Е. Если в этом пространстве окажется проводник, то в нем возникнет индукционный ток.
Индукционные токи, которые возникают в сплошных металлических телах, находящихся в переменном магнитном поле, и замыкаются внутри этих тел, называют вихревыми токами или токами Фуко (в честь французского ученого Ж. Фуко, который их исследовал).
Если вихревой ток вызывается движением тела в магнитном поле, то согласно закону Ленца этот ток должен тормозить движение тела. Тормозящее действие вихревых токов можно проиллюстрировать с помощью следующего опыта.
Если медную пластинку Р (рис. 23.11) заставить колебаться при выключенном токе в электромагните М, а затем при включенном токе в нем, то будет видно, что во втором случае колебания прекращаются почти мгновенно. Внешне кажется, что в этом случае пластинка как бы вязнет в густой жидкости. Тормозящее действие вихревых токов используется в измерительных приборах для успокоения колебаний стрелки измерительного механизма.
В современной технике нагревание вихревыми токами используется для закалки деталей и для изготовления сплавов в индукционных печах.
