Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_po_fizike2(1).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
109.38 Кб
Скачать

Билет №6 Электронно-дырочный переход. Полупроводниковый диод. Транзистор.

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p-области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу (рис. 4.14.1).Граница между двумя соседними областями полупроводника, одна из которых обладает проводимостью n-типа, а другая p-типа, называется электронно-дырочным переходом (p-n-переходом). Он является основой большинства полупроводниковых приборов. Наиболее широко применяются плоскостные и точечные p-n-переходы.

Плоскостной p-n-переход представляет собой слоисто-контактный элемент в объеме кристалла на границе двух полупроводников с проводимостями p- и n-типов.

Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать n–p-переход, создавая ток в прямом направлении. Сила тока через n–p-переход в этом случае будет возрастать при увеличении напряжения источника. Способность n–p-перехода пропускать ток практически только в одном направлении используется в приборах, которые называются полупроводниковыми диодами. Полупроводниковые диоды изготавливаются из кристаллов кремния или германия. При их изготовлении в кристалл c каким-либо типом проводимости вплавляют примесь, обеспечивающую другой тип проводимости. Полупроводниковые диоды используются в выпрямителях для преобразования переменного тока в постоянный. Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами –малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры.

Полупроводниковые приборы, предназначенные для усиления изменений напряжения и тока, называют полупроводниковыми триодами или транзисторами. Это приборы не с одним, а с двумя n–p-переходами. Обычно для создания транзисторов используют германий и кремний. Транзисторы бывают двух типов: p–n–p-транзисторы и n–p–n-транзисторы. Например, германиевый транзистор p–n–p-типа представляет собой небольшую пластинку из германия с донорной примесью, то есть из полупроводника n-типа. В этой пластинке создаются две области с акцепторной примесью, то есть области с дырочной проводимостью.

МАГНИТНОЕ ПОЛЕ

Билет №1 Магнитное поле. Взаимодействие токов. Опыт Ампера. Опыт Эрстеда. Магнитная индукция.

Токи одинакового направления притягиваются, а противоположного — отталкиваются. Следовательно, когда проводники с токами находятся на некотором расстоянии друг от друга, между ними существует взаимодействие, которое нельзя объяснить наличием электрического поля между ними, поскольку проводники при прохождении по ним тока остаются практически нейтральными. Это означает, что вокруг любого проводника с током имеется какое-то другое поле, отличное от электрического. Магнитное поле создается движущимися электрическими зарядами или переменным электрическим полем и действует только на движущиеся заряды. Магнитные поля различных токов при наложении могут как усиливать, так и ослаблять друг друга. В 1820 г. датский физик X. Эрстед заметил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее. Опыты Эрстеда показали, что магнитное поле проводника с током имеет такую же природу, что и поле магнита. В том же году французский физик А.Ампер установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкиваются, если токи текут в противоположных направлениях

Магнитное поле воздействует на движущийся заряд с определённой силой. Для характеристики этой силы используется вектор магнитной индукции.

Магнитная индукция - это вектор, определяющий силу, с которой магнитное поле действует на движущийся заряд. Вектор магнитной индукции является характеристикой магнитного поля. Единицей магнитной индукции является тесла, Тл. Иногда магнитную индукцию измеряют в гауссах: 1 Гс = 10-4 Тл.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]