
- •Введение
- •1 Основные загрязняющие вещества
- •1.1Диоксид серы, или сернистый ангидрид (сернистый газ)
- •1.2 Оксид углерода
- •1.3 Летучие органические соединения
- •1.4 Диоксид азота
- •2 Методы очистки газовоздушных выбросов
- •2.1 Очистка от аэрозолей
- •2.1.1 Механическая очистка
- •2.1.2 Электростатическая очистка
- •2.1.3 Звуковая и ультразвуковая коагуляция
- •2.2 Очистка от кислых и нейтральных газов
- •2.2.1 Физические методы
- •2.2.1.1 Абсорбция
- •2.2.1.2 Адсорбция
- •2.2.1.3 Термическое дожигание
- •1 − Входной патрубок; 2 − теплообменник-подогреватель; 3 − V-образная полость коллектора горелки; 4 − камера смешения; 5 − выходной патрубок
- •2.2.2 Химические методы
- •2.2.2.1Озонные методы
- •2.2.2.2 Плазмохимические методы
- •2.2.2.3 Каталитический метод очистки газов
- •2.2.3 Биологические методы
- •2.2.4 Физикохимические методы
- •2.2.4.2 Плазмокаталитический метод
- •3 Биоочистка газовоздушных выбросов
- •4 Биодезодорация газов
- •5 Характеристика микроорганизмов
- •5.1Метанотрофные бактерии
- •5.2 Нитрифицирующие бактерии
- •5.3 Сероокисляющие бактерии
- •Заключение
- •Список использованных источников
2.2.1.3 Термическое дожигание
Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200°C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.
При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).
Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами[3].
Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.
Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.
Одним из простейших устройств, используемых для огневого обезвреживания технологических и вентиляционных выбросов, является горелка, предназначенная для сжигания природного газа (рисунок 7) .
1 − Входной патрубок; 2 − теплообменник-подогреватель; 3 − V-образная полость коллектора горелки; 4 − камера смешения; 5 − выходной патрубок
Рисунок 7 - Установка огневого обезвреживания
Обезвреживаемые выбросы в этом случае подаются в канал 1, где они омывают горелку 2. Из коллектора 3 газ, служащий топливом, поступает в сопла, при истечении из которых инжектируется первичный воздух из окружающей среды. Горение смеси газа с первичным воздухом осуществляется в V-образной полости коллектора. Процесс догорания происходит на выходе из полости, где хвостовая часть факела контактирует с обезвреживаемыми выбросами при их истечении из кольцевой щели между корпусом горелки и коллектора [1].
2.2.2 Химические методы
2.2.2.1Озонные методы
Озонные методы применяют для обезвреживания дымовых газов от SO2 (NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.
Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачу его на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород понижается до 60-80 °C. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясокомбинатах и в быту [1].