Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
15-29.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
199.62 Кб
Скачать

Действие магнитного поля на проводник с током Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

Направление движения проводника зависит от направления тока в нем и от расположения полюсов магнита. При направлении тока от плюса к минусу проводник отклонится влево, а если поменять направление тока, то проводник отклонится вправо. Так же проводник может отклоняться в разные стороны в зависимости от расположения полюсов магнита. Практически, важное значение имеет вращение проводника с током в магнитном поле. Так, например, вращение катушки с током в магнитном поле используют в устройстве электрического двигателя.

В технических электродвигателях обмотка состоит из большого числа витков проволоки. Эти витки укладываются в пазы, сделанные вдоль боковой поверхности железного цилиндра. Этот цилиндр нужен для усиления магнитного поля.

КПД мощных электрических двигателей достигает 98%. Они нашли широкое применение на транспорте, в промышленности и т.д. Один из первых в мире электрических двигателей, пригодных для практического применения, был изобретен русским ученым Б. С. Якоби в 1834 г.

Электрическое поле характеризуется векторной величиной — напряженностью электрического поля. Надо бы ввести также и величину, характеризующую магнитное поле количественно. Дело это непростое, так как магнитные взаимодействия сложнее электрических. Векторную характеристику магнитного поля называют вектором магнитной индукции и обозначают буквой  . Сначала мы рассмотрим вопрос только о направлении вектора  .

Направление вектора магнитной индукции. Ориентирующее действие магнитного поля на магнитную стрелку или рамку с током можно использовать для определения направления вектора магнитной индукции.

За направление вектора магнитной индукции принимается направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током (рис. 1.7, б). Положительная нормаль направлена в ту сторону, куда перемещается буравчик (с правой нарезкой), если вращать его по направлению тока в рамке.

Используя рамку с током или магнитную стрелку, можно определить направление вектора магнитной индукции в любой точке поля.

Направление вектора магнитной индукции устанавливают с помощью правила буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление враш,ения ручки буравчика указывает направление вектора магнитной индукции.

Опыт по определению направления вектора индукции магнитного поля Земли проводит каждый, кто ориентируется на местности по компасу.  Зако́н Ампе́ра  — закон взаимодействия электрических токов. Впервые был установленАндре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Выражение для силы  , с которой магнитное поле действует на элемент объёма   проводника с током плотности  , находящегося в магнитном поле с индукцией  , в Международной системе единиц (СИ) имеет вид:

.

Если ток течёт по тонкому проводнику, то  , где   — «элемент длины» проводника — вектор, по модулю равный   и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Сила  , с которой магнитное поле действует на элемент   проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока   в проводнике и векторному произведению элемента длины   проводника на магнитную индукцию  :

Направление силы   определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощиправила левой руки.

Модуль силы Ампера можно найти по формуле:

где   — угол между векторами магнитной индукции и тока.

Сила   максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ( ):

16 Билет

Сила Лоренца — сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью   заряд   лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического   и магнитного   полей. Выражается в СИ как:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найденоХевисайдом[2].

Макроскопическим проявлением силы Лоренца является сила Ампера.

Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав третий закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[3].

ПРАВИЛО ЛЕВОЙ РУКИ - определяет направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник.

Магнитные свойства вещества

Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т.к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость может быть принятой равной 1,0.

К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

При нормальной температуре вещество ферромагнетика состоит из самопроизвольно намагниченных в определенном направлении областей (доменов), в которых элементарные магнитики расположены почти параллельно один другому и удерживаются в таком положении магнитными силами и силами электрического взаимодействия.

Магнитные поля отдельных областей не обнаруживаются во внешнем пространстве, т.к. все они намагничены в разных направлениях. Интенсивность самопроизвольного намагничивания доменов J зависит от температуры и при абсолютном нуле равна интенсивности полного насыщения. Тепловое движение разрушает упорядоченную структуру и при некоторой температуре  , характерной для данного вещества, упорядоченное расположение полностью разрушается. Эта температура называется точкой Кюри. Выше точки Кюри вещество обладает свойствами парамагнетика.

17 Билет

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменениямагнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Явление электромагнитной индукции состоит в том, что любое изменение магнитного потока Ф, пронизывающего замкнутый контур, вызывает появление индукционного тока в контуре.

Закон Фарадея-Ленца утверждает, что ЭДС индукции равна скорости изменения магнитного потока, взятой с обратным знаком.

Согласно правилу Ленца: индукционный ток имеет такое направление, чтобы создаваемое им магнитное поле препятствовало изменению магнитного потока.

Классические опыты Фарадея, с помощью которых было открыто явление электромагнитной индукции.  Опыт I (рис. 1а). Если в соленоид, который замкнут на гальванометр, вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания мы видим отклонение стрелки гальванометра (возникает индукционный ток); при этом отклонения стрелки при вдвигании и выдвигании магнита имеют противоположные направления. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При смене в опыте полюсов магнита направление отклонения стрелки также изменится. Для получения индукционного тока можно оставлять магнит неподвижным, тогда нужно относительно магнита перемещать соленоид.  Опыт II. Концы одной из катушек, которая вставлена одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. В моменты включения или выключения тока наблюдается отклонение стрелки гальванометра, а также в моменты его уменьшения или увеличения, а также при перемещении катушек друг относительно друга (рис. 1б). Направления отклонений стрелки гальванометра также имею противоположные направления при включении или выключении тока, его увеличении или уменьшении, приближении или удалении катушек. Исследуя результаты своих многочисленных опытов, Фарадей пришел к заключению, что индукционный ток возникает всегда, когда в опыте осуществляется изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также появляется индукционный ток - в этом случае индукция магнитного поля вблизи контура остается постоянной, а меняется только поток магнитной индукции сквозь контур. 

Магнитный поток — поток   как интеграл вектора магнитной индукции   через конечную поверхность  . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где   — единичный векторнормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

Ток, возникающий в контуре при изменении магнитного потока, называют индукционным током.

Условием существования электрического тока в замкнутом контуре является наличие электродвижущей силы, поддерживающей разность потенциалов. Следовательно, при изменении магнитного потока, пронизывающего замкнутый контур, в нем возникает ЭДС, которую называют ЭДС индукции (i).

Явление возникновения ЭДС в контуре при изменении магнитного потока, пронизывающего контур, называется электромагнитной индукцией.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]