
- •1.Принципи побудови багатоканальних систем зв’язку
- •2.1. Багатоканальна система зв’язку
- •4. Види модуляції, застосовувані в системах із чпк
- •3.1.1. Лінійна амплітудна модуляція (ам) та її властивості
- •3.1.2. Лінійна фазова модуляція (фм) та її властивості
- •5. Улучшение энергетики модулированных сигналов в системах с чрк
- •6. Завади в системах із чпк і причини їхньої появи
- •7. Основные виды импульсной модуляции и способы их получения
- •1. Амплитудная импульсная модуляция (аим)
- •2. Широтная импульсная модуляция (шим)
- •3. Временная импульсная модуляция (вим)
- •9. Перехресні шуми інтерференційного походження
- •11. Показники якості роботи систем зв’язку
- •13. Типи каналів передачі та їх характеристики.
- •2.6. ДвоСторонНі канали передачі.
- •14. Генераторне обладнання асп.
- •2.7.4. Обладнання спряження і лінійного тракту асп.
- •15 Структурна схема декодера (цАп) системи ікм-30.
- •16. Утворення групового сигналу в цсп з ікм
- •17. Синхронізація в системах з ікм- часовим рк.
- •18 Лінійний тракт цифрової системи передавання з ікм – часовим розділенням каналів.
- •3.9.1. Формування лінійного сигналу.
- •3.9.2. Регенерація цифрових сигналів.
- •3.9.3. Накопичення помилок.
- •19. Ієрархія цсп.
- •Основні характеристики цсп з ікм.
3.9.3. Накопичення помилок.
Наявність порогового елементу дозволяє ліквідувати завади, які сумуються з сигналом, спотворюють його форму. Якщо на тактовій позиції у вхідному сигналі передається нуль, то за рахунок адитивних завад на цій позиції при стробуванні може з’явитися деякий відлік. Якщо величина цього відліку мала ( Uпор), то після ПЕ на цій позиції знову буде нуль. Якщо амплітуда завад Uпор, то можливе помилкове приймання символу - на позиції 0 буде зафіксовано 1. Помилки на виході регенератора можуть виникати також при випадкових змінах порогової напруги, підсилення підсилювача, випадкових змінах часових положень стробуючих імпульсів.
Якість роботи регенератора оцінюється вірогідністю помилки, котра визначається співвідношенням числа переданих помилкових символів до загального числа символів за достатньо великий проміжок часу:
Рош = Nош /N
Якщо вірогідність помилки на вході одного регенератора дорівнює Рош, то для лінійного тракту, який містить n регенераторів, результуюча вірогідність:
Рош.рез. = n Рош
Таким чином, аналогічно тому, як в лінійному тракті аналогових СП має місце накопичення завад при зростанні числа підсилювачів, в цифровому лінійному тракті з ростом числа регенераторів збільшується вірогідність помилки. Розрахунки показують, що для всього лінійного тракту дозволена вірогідність помилки не повинна перевищувати Рош.доп. = 10-6.
Важливою особливістю ЦСП є то, що імовірність помилки в більший степені залежить від завадозахищеності сигналу Аз, тобто невелика зміна завадозахищеності суттєво впливає на імовірність помилки.
АЗ, дБ |
19,2 |
20,5 |
21,2 |
Рпом. |
10-6 |
10-7 |
10-8 |
Така значна зміна імовірності помилки обумовлена пороговим пристроєм. При невеликому зменшені рівня завади на вході порогового пристрою імовірність передавання помилкового символу різко зменшується. Для збереження дозволеної завадозахишеності при збільшені числа ренегераційних ділянок треба збільшити завадозахишеність на вході кожного регенератора на невелику величину. Наприклад, при збільшені кількості регенераторів у 10 разів, імовірність помилки збільшується також у 10 разів. Для збереження допустимого значення Рпом достатньо збільшити Аз на 1,3 дБ, що значно менше, ніж необхідно збільшити у АСП. Це є значною перевагою ЦСП. Порівняно малі значення дозволеної завадозахищеності дозволяють використовувати ЦСП на лініях передавання з високим рівнем завад, при якому АСП працювати не можуть.
19. Ієрархія цсп.
Подібно до того, як у АСП для уніфікації обладнання використовуються стандартні спектри груп каналів, у ЦСП рекомендовані стандартні швидкості цифрових потоків. Найнижча швидкість цифрового потоку, рекомендована МККТТ дорівнює 2048 кбіт/с. Система передавання, яка утворює цифровий потік з такою швидкістю називається первинною і є СП найнижчого порядку. Приклад – ІКМ-30.
СП більш високих порядків будуються на основі СП нижчих порядків шляхом об’єднання їх цифрових потоків. З’єднуючи цифрові потоки чотирьох первинних ЦСП отримують вторинну ЦСП, швидкість передавання якої дорівнює 8448 кбіт/с. Приклад – ІКМ-120, яка забезпечує передавання 120 каналів ТЧ.
Рис. 3.28
Розглянемо принцип об’єднання ЦСП низьких порядків при побудові систем більш високих порядків.
Рис. 3.29
Послідовності імпульсів кожної із систем передавання ІКМ-30 співпадають у часі. Тому з’єднати їх в один цифровий потік можливо тільки, якщо вкоротити тривалість кожного імпульсу і передати послідовно замість повного імпульсу однієї системи скорочені імпульси усіх чотирьох систем. Такий метод об’єднання називається посимвольним. На початку кожного циклу передавання передають груповий цикловий синхросигнал, який потрібен для правильного розподілу цифрових потоків між первинними системами ІКМ-30. Тому імпульси первинних систем ІКМ-30 скорочуються більше, ніж у 4 рази і швидкість об’єднаного потоку більша, ніж сума швидкостей ІКМ-30.