
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
Контрольные вопросы
1. Что называется теплообменным аппаратом?
2. На какие группы делятся теплообменные аппараты?
3. По каким схемам осуществляется движение теплоносителей в теплообменных аппаратах?
4. Основное уравнение теплопередачи и теплового баланса.
5. Какая величина называется водяным эквивалентом теплоносителя системы?
6. Как изменяются температуры жидкостей в теплообменниках в зависимости от их водяных эквивалентов?
7. Графики изменения температур рабочих жидкостей в аппаратах прямотоком и противотоком?
8. Как производится усреднение коэффициента теплопередачи?
9. Вывод уравнения среднелогарифмического температурного напора.
10. Написать уравнение средне логарифмического температурного напора для аппаратов с прямотоком и противотоком.
11. При каких условиях в расчётах теплообменных аппаратов принимают среднеарифметический температурный напор?
12. Как рассчитать необходимую поверхность нагрева теплообменника?
10. Теплопроводность при нестационарном режиме
10.1 Общие положения
В отличие от температурного поля при стационарном режиме температурное поле при нестационарном режиме меняется во времени. Количество переданной теплоты при нестационарном режиме также непостоянно, и поэтому неустановившийся тепловой процесс всегда связан с явлениями нагревания или, охлаждения тел.
Процессы нестационарной теплопроводности имеют большое значение для отопления, вентиляции, кондиционирования воздуха, теплоснабжения и теплогенерирующих установок. Ограждения зданий испытывают изменяющееся во времени (иногда резко) тепловое воздействие как со стороны наружного воздуха, так и со стороны помещения; таким образом, в массиве ограждения осуществляется процесс нестационарной теплопроводности.
Задача о распространении теплоты в условиях нестационарного режима в общем случае не может быть решена аналитическим путем вследствие большой ее сложности. Иначе говоря, невозможно найти функцию t = f(x, y, z, τ), которая одновременно удовлетворяла бы как дифференциальному уравнению теплопроводности, так и соответствующим условиям однозначности. Действительно, в общем случае движение теплоты в теле может происходить по всем трем координатным осям, и дифференциальное уравнение теплопроводности выведенное в разд.2 имеет вид
(10.1)
Для решения этого уравнения нужно найти постоянные интегрирования, а для этого необходимо знать краевые условия рассматриваемой задачи. Эти условия разделяются на временные и пространственные (граничные). Временные краевые условия предусматривают исходное распределение температуры в теле и относятся к моменту времени τ = 0. Пространственные краевые условия относятся к поверхностям, ограничивающим рассматриваемую среду. Эти условия могут быть заданы по-разному, например:
1) задаются распределение температуры на поверхности тела и её изменение во времени;
2) задаются величина теплового потока, проходящего через поверхность, и его изменения во времени. В соответствии с законом Фурье q = – λdt/dn, а это означает, что известен угол наклона касательной к температурной кривой в точке ее пересечения с поверхностью. Температура поверхности тела оказывается неизвестной;
3) задаются температура, t0 среды, окружающей поверхность тела, и коэффициент теплоотдачи α между средой и поверхностью. Этот способ наиболее распространен на практике. Математически этот способ записывается формулой, получаемой из сравнения уравнений, выражающих законы Фурье и Ньютона:
q = – λdt / dn и q = α (tст – t0),
откуда
(10.2)
Аналитическое решение дифференциальных уравнений теплопроводности возможно лишь для некоторых частных задач при ряде упрощений. В частности, из задач, представляющих наибольшее практическое значение, имеются аналитические решения для неограниченной плоской стенки, круглого цилиндра бесконечной длины и шара.
Данные решения достаточно сложны для практических расчётов. Рассмотрим эти решения.