
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
8.5. Экраны для защиты от излучения
В различных областях техники довольно часто встречаются случаи, когда требуется уменьшить передачу теплоты излучением. Например, нужно оградить рабочих от действия тепловых лучей в цехах, где имеются поверхности с высокими температурами. В других случаях необходимо оградить деревянные части зданий от энергии излучения в целях предотвращения воспламенения; следует защищать от энергии излучения термометры, так как в противном случае они дают неверные показания. Поэтому всегда, когда необходимо уменьшить передачу теплоты излучением прибегают к установке экранов. Обычно экран представляет собой тонкий металлический лист с большой отражательной способностью. Температуры обеих поверхностей экрана можно считать одинаковыми.
Рассмотрим действие экрана между двумя плоскими безграничными параллельными поверхностями, причем передачей теплоты конвекцией будем пренебрегать. Поверхности стенок и экрана считаем одинаковыми. Температуры стенок Т1 и Т2 поддерживаются постоянными, причем T1 > Т2. Допускаем, что коэффициенты излучения стенок и экрана равны между собой. Тогда приведенные коэффициенты излучения между поверхностями без экрана, между первой поверхностью и экраном, экраном и второй поверхностью равны между собой.
Тепловой поток, передаваемый от первой поверхности ко второй (без экрана), определяем из уравнения
Тепловой поток, передаваемый от первой поверхности к экрану, находим по формуле
а от экрана ко второй поверхности — по уравнению
При установившемся тепловом состоянии q1э=q2э, поэтому
откуда
Подставляя полученную температуру экрана в любое из уравнений, получаем уравнение для определения лучистого потока между пластинами при наличии экрана:
(8.39)
Сравнивая первое и последнее уравнения, находим, что установка одного экрана при принятых условиях уменьшает теплоотдачу излучением в два раза:
(8.40)
Можно доказать, что установка двух экранов уменьшает теплоотдачу втрое, установка трех экранов уменьшает теплоотдачу вчетверо и т. д. Значительный эффект уменьшения теплообмена излучением получается при применении экрана из полированного металла, тогда
(8.41)
где С'пр — приведенный коэффициент излучения между поверхностью и экраном; Спр — приведенный коэффициент излучения между поверхностями.
8.6. Особенности излучения газов
Одноатомные и двухатомные газы не обладают заметной излучательной способностью и являются практически прозрачными (диатермичными) для излучения. Трехатомные газы (Н2О, СО2 и др.) обладают значительной излучательной и поглощательной способностью, которая носит резко выраженный селективный (избирательный) характер. В отличие от твердых и жидких тел излучение газов носит объемный характер.
Количество поглощаемой газом энергии зависит от толщины газового слоя и концентрации поглощающих (или излучающих) молекул. Концентрацию молекул удобно оценить парциальным давлением газа р. Так как толщина газового слоя и парциальное давление газа в одинаковой мере влияют на число молекул, то степень черноты газа и его поглощательную способность можно выбирать в зависимости от параметра pl, где l — средняя длина луча в пределах газового слоя, которая может быть определена из формулы l = 3,6V/F (здесь V — газовый объем; F — площадь поверхности оболочки).
Наиболее хорошо изучен теплообмен излучением для Н2О и СО2, которые содержатся в продуктах сгорания органических топлив. Плотность их собственного интегрального излучения по экспериментальным данным определяется из выражений:
(8.42)
(8.43)
Из уравнений (8.42) и (8.43) видно, что парциальное давление р и толщина слоя l оказывают большее влияние на излучение Н2О, чем на излучение СО2. Поэтому при малых толщинах слоя преобладает излучение СО2, а при больших — излучение Н2О.
Рис. 8.10. Зависимость степени черноты СО2 от температуры и эффективной длинны луча
В различном теплотехническом оборудовании (котельные установки, промышленные печи и др.) поток дымовых газов окружен оболочкой (стенками газоходов, поверхностями нагрева). Для расчёта лучистого теплообмена между газом и стенками в этом случае применяют следующую формулу
(8.44)
где
– эффективная степень черноты стенки
канала, учитывающая излучение газов;
εг
– степень черноты газовой смеси,
содержащей СО2
и Н2О,
определяется по формуле
εг = εСО2 + β · εН2О; (8.45)
β – поправочный коэффициент; Аг – поглощательная способность газов при температуре стенки, определяется по формуле
(8.46)
Тг – температура газов, °К; Тст – температура тепловоспринимающей стенки, °К; εСО2, εН2О, и ε’СО2, ε’Н2О – степень черноты углекислого газа и водяного пара при температуре газов Тг и стенки Тст соответственно.
Величины εСО2 и ε’СО2 определяют по графику (рис. 8.10). Аналогичный график применяют и для определения εН2О и ε’Н2О.