
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
2.3. Тепловой поток
Тепло самопроизвольно переносится только в сторону убывания температуры. Количество тепла, переносимого через какую-либо поверхность в единицу времени, называется тепловым потоком Q. Тепловой поток, отнесённый к единице поверхности, называется плотностью теплового потока, или удельным тепловым потоком, или тепловой нагрузкой поверхности q. Если тепловой поток отнесен к единице изотермической поверхности, то величина q является вектором, направление которого совпадает с направлением распространения тепла в данной точке и противоположно направлению вектора температурного градиента (рис. 2.2).
Рис. 2.2. Закон Фурье
Закон Фурье. Изучая процесс теплопроводности в твердых телах, Фурье экспериментально установил, что количество переданного тепла пропорционально падению температуры, времени и площади сечения, перпендикулярного направлению распространения тепла. Если количество переданного тепла отнести к единице сечения и единице времени, то установленную зависимость можно записать:
(2.4)
2.4. Коэффициент теплопроводности
Для металлов (кроме алюминия) теплопроводность с увеличением температуры несколько убывает: это означает, что холодный металл проводит теплоту лучше, чем нагретый, Теплопроводность металлов колеблется в пределах 2,3—420 Вт/(м·К).
Для изоляционных и огнеупорных материалов λ при повышении температуры возрастает. Это объясняется тем, что большинство изоляционных материалов не представляет собой монолитной массы, а является пористым телом — конгломератом отдельных частиц с воздушными прослойками между ними, вследствие чего теплопроводность уменьшается. Однако при лучистом теплообмене, происходящем в этих прослойках эффективная теплопроводность (с учетом излучения) увеличивается при повышении температуры пористого тела.
Для таких материалов λ зависит не только от свойств материала, но и от степени его уплотненности, что в свою очередь характеризуется плотностью. Кроме того, на теплопроводность указанных материалов большое влияние оказывает влажность, с увеличением которой теплопроводность возрастает. Для влажного материала λ выше, чем для сухого материала и воды, взятых в отдельности. Например, для сухого кирпича λ = 0,35 Вт/(м·К), для воды λ =0,58 Вт/(м·К), а для влажного кирпича λ =1,05 Вт/(м·К). Это объясняется тем, что адсорбированная в капиллярно-пористых телах вода отличается по физическим свойствам от свободной воды. Поэтому по отношению к таким материалам правильнее величину λ называть эффективной теплопроводностью. Теплопроводность теплоизоляционных материалов находится в пределах 0,02—3 Вт/(м·К).
Для газов с увеличением температуры теплопроводность также возрастает, но от давления она практически не зависит (кроме очень низкого <2,5 кПа и очень высокого >200 МПа). Для газов теплопроводность лежит в пределах 0,006—0.6 Вт/(м·К).
Для большинства капельных жидкостей теплопроводность находится в пределах 0,09—0,7 Вт/(м·К), и с повышением температуры уменьшается. Вода является исключением: с ростом температуры от 0 до 150°С теплопроводность возрастает, а при дальнейшем увеличении температуры уменьшается.