
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
Контрольные вопросы
1. Что называется теплопередачей?
2. Опишете передачу теплоты через стенку.
3. Охарактеризуйтесь граничные условия III рода.
4. Каким уравнением описываются отдельные стадии процесса теплопередачи?
5. Основное уравнение теплопередачи.
6. Что называется коэффициентом теплопередачи?
7. Что называется общим сопротивлением теплопередачи и из каких величин оно складывается?
8. Передача теплоты через многослойную плоскую стенку и коэффициент теплопередачи через неё.
9. Как определяются температуры поверхности плоской стенки?
10. Передача теплоты через однослойную цилиндрическую стенку - вывод уравнения.
11. Определение полного и линейного теплового потока через однослойную цилиндрическую стенку.
12. Определить линейный коэффициент теплопередачи через однослойную цилиндрическую стенку.
13. Тепловой поток через многослойную цилиндрическую стенку.
14. Определить линейный коэффициент теплопередачи многослойной цилиндрической стенки.
15. Как определяется общее линейное сопротивление теплопередачи цилиндрической стенки?
16. Как определяются температуры внутренней и наружной поверхностей цилиндрической стенки?
8 Теплообмен излучением
8.1 Основные понятия
Как известно, носителями лучистой энергии являются электромагнитные колебания с длиной волны от малых долей микрона до многих километров. В зависимости от диапазона длин волн такие излучения известны под разными названиями: рентгеновские, ультрафиолетовые, световые, инфракрасные лучи, радиоволны. Примерная классификация их следующая.
Длина волны |
Вид излучения |
0,05·10–6 мкм |
Космическое |
(0,5–1,0)·10–6 мкм |
γ –излучение |
10–6-20·10–3 мкм |
Рентгеновское |
20·10–3–0,4 мкм |
Ультрафиолетовое |
0,4–0,8 мкм |
Видимое |
0,8 мкм–0,8 мм |
Тепловое (инфракрасное) |
0,2 мм–Х км |
Радиоволны |
Это деление сложилось исторически; в действительности какой-либо резкой границы по длинам волн не существует.
С квантовой точки зрения лучистый поток представляет собой поток некоторых частиц – фотонов энергия которых равна hv, где h=6,62·10–34 Дж·с постоянная Планка и v – частота колебаний эквивалентного электромагнитного поля. Напомним, что длина волны λ связана с частотой v соотношением λ·v=c, где с – скорость распространения колебаний (в вакууме с=3 ·105 км/с).
Для нас наибольший интерес представляют те лучи, возникновение которых определяется только температурой и оптическими свойствами излучающего тела. Такими свойствами обладают световые и инфракрасные лучи, т.е. лучи длинной волны приблизительно от 0,4 до 800 мкм. Эти лучи и называют тепловыми, а процесс их распространения тепловым излучением или радиацией.
Природа тепловых и световых лучей одна и та же. Разница между ними лишь в длине волны; световые лучи имеют длину волны 0,4 – 0,8, а тепловые – 0,8 – 800 мкм. Законы же распространения, отражения и преломления, установленные для световых лучей, справедливы и для тепловых. Поэтому, чтобы лучше себе представить какие-либо сложные явления теплового излучения, всегда закономерно проводить аналогию со световым излучением, которое нам больше известно и доступно непосредственному наблюдению.
Тепловое излучение свойственно всем телам, и каждое из них излучает энергию в окружающее пространство. При попадании на другие тела эта энергия частью поглощается, частью отражается и частью проходит сквозь тело. Та часть лучистой энергии, которая поглощается телом, снова превращается в тепловую. Та часть энергии, которая отражается, попадает на другие (окружающие) тела и ими поглощается. То же самое происходит и с той частью энергии, которая проходит сквозь тело. Таким образом, после ряда поглощений излучаемая энергия полностью распределяется между окружающими телами. Следовательно, каждое тело не только непрерывно излучает, но и непрерывно поглощает лучистую энергию.
В результате этих явлений, связанных с двойным взаимным превращением энергии (тепловая – лучистая – тепловая), и осуществляется процесс лучистого теплообмена. Количество отдаваемого или воспринимаемого тепла определяется разностью между количествами излучаемой и поглощаемой телом лучистой энергии. Такая разность отлична от нуля, если температура тел, участвующих во взаимном обмене лучистой энергией, различна.
При одинаковой температуре этих тел вся система находится в так называемом подвижном тепловом или термодинамическом равновесии. В этом случае все тела системы также излучают и поглощают, только для каждого из них приход лучистой энергии равен её расходу.