
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
5.6. Теплоотдача при свободном движении жидкости
Теплоотдача при свободном движении теплоносителя широко используется как в быту, так и в технике. Например, комнатный воздух нагревается печами или отопительными приборами в условиях естественной конвекции. В технике такой теплообмен происходит при нагревании воды в паровых котлах, при охлаждении паропроводов, обмуровки котлов, промышленных печей и других тепловых устройств.
Свободный теплообмен возникает в неравномерно нагретом газе или жидкости, находящихся как в ограниченном, так и в неограниченном пространстве. Если тело имеет более высокую температуру, чем окружающая среда, то слои жидкости, нагреваясь от тела, становятся легче и под действием возникающей подъемной силы поднимаются вверх, а на их место поступают из окружающего пространства более холодные слои. Поэтому и возникает свободное движение.
На рис. 5.15 показаны картина свободного движения нагретого воздуха вдоль вертикальной стенки и изменение при этом коэффициента теплоотдачи. На нижней части стенки при малых температурных напорах наблюдается ламинарный характер движения; с повышением температурного напора движение принимает своеобразную «локонообразную» форму, и затем эта переходная форма сменяется вполне развитым турбулентным движением, которое сохраняется уже на всем протяжении трубы. В соответствии с изменением режима движения изменяется и коэффициент теплоотдачи : на нижнем участке по мере увеличения толщины ламинарной пленки он уменьшается по высоте стенки, затем по мере турбулизации пограничного слоя возрастает по высоте стенки и стабилизируется на участке развитого турбулентного движения.
Своеобразный характер перемещения жидкости отмечается около горизонтальных плоских стенок или плит, обращенных нагретой поверхностью вверх. При большой площади поверхности в нагреваемой среде образуются местные восходящие и нисходящие потоки (рис. 5.16, а), а при малой площади поверхности устанавливается один восходящий поток (рис. 5.16, б). Для тех же плит, но обращенных нагретой поверхностью вниз, движение жидкости происходит лишь в тонком слое под поверхностью (рис. 5.16, в)
Рис. 5.5. Характер свободного движения нагретого воздуха и изменение вдоль вертикальной стенки
Рис. 5.16. Характер свободного движения жидкости у нагретых горизонтальных плит
У горизонтальных труб малого диаметра восходящий поток сохраняет ламинарный режим даже вдали от трубы. При большом диаметре переход в турбулентный режим может происходить в пределах поверхности самой трубы
Результаты многочисленных исследований показали, что при свободной конвекции в неограниченном пространстве решающее значение имеют те особенности процесса, которые обусловлены физическими свойствами среды и действующим температурным напором. Это значит, что критерий Nu достаточно точно может быть функцией критериев Gr и Рг независимо от частных особенностей процесса (форма тела, вид жидкости, расположение тела в пространстве).
Аналитические решения задач по определению теплоотдачи при свободном ламинарном и турбулентном движении выполнены при целом ряде упрощающих допущений, поэтому эти решения большого практического применения не получили. Все наши знания по определению коэффициента теплоотдачи в основном базируются на эксперименте.
В результате обобщения опытных данных были получены эмпирические уравнения подобия.
Для определения средних коэффициентов теплоотдачи при свободном ламинарном движении жидкости вдоль вертикальных стенок можно использовать следующие уравнение:
(5.24)
Для определения средних коэффициентов теплоотдачи при свободном турбулентном движении жидкости вдоль вертикальной стенки, которое наступает при числах Grж,l·Prж<6·1010, предложена следующая формула:
(5.25)
(5.26)
Д
(5.26)
(5.26)
При обтекании свободным потоком воздуха горизонтальных труб применяют следующие формулы:
а
(5.27)
(ламинарный режим)
(5.27)
б
(5.28)
(переходный режим)
(5.28)
в) при
(турбулентный режим)
(5.29)
В формулах (5.27) - (5.29) критерии подобия рассчитываются при средней температуре
tср = 0,5(tж+tс) представляющей среднею арифметическую температуру жидкости (взятой вне зоны, охваченной циркуляцией) и стенки tc.
Задание 2. По трубе с внутренним диаметром d = 50 мм течет вода со средней скоростью w. Средняя температура воды tж, температура стенки трубы tст постоянна. Определить среднее значение коэффициента теплоотдачи и количество передаваемого в единицу времени тепла (линейную плотность теплового потока, Вт/м), если относительная длина трубы l/d=100.
Таблица 5.1