
- •Введение
- •1. Виды теплообмена
- •Контрольные вопросы
- •2. Основные положения теплопроводности
- •2.1. Температурное поле
- •2.2 Градиент температур
- •2.3. Тепловой поток
- •2.4. Коэффициент теплопроводности
- •2.5. Дифференциальное уравнение теплопроводности
- •2.6. Краевые условия
- •Контрольные вопросы
- •3 Теплопроводность при стационарном режиме
- •3.1. Теплопроводность через однослойную плоскую стенку
- •3.2. Теплопроводность через многослойную плоскую стенку
- •3.3. Теплопроводность через однослойную цилиндрическую стенку
- •3.4. Теплопроводность через многослойную цилиндрическую стенку
- •3.5. Упрощённый расчёт теплопроводности через цилиндрическую стенку
- •Числовые данные к заданию 1
- •Контрольные вопросы
- •4. Основы конвективного теплообмена
- •4.1. Основы теории конвективного теплообмена
- •4.2. Дифференциальные уравнения теплоотдачи
- •4.3. Краевые условия.
- •4.4. Основы теории подобия
- •4.5. Подобие процессов конвективного теплообмена
- •4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
- •4.7.Условия подобия процессов теплообмена при естественной конвекции
- •4.8. Условия подобия процессов конвективного теплообмена при совместном свободно-вынужденном движении теплоносителя.
- •Контрольные вопросы
- •5. Конвективный теплообмен в вынужденном и свободном потоке жидкости.
- •5.1. Теплоотдача при вынужденном движении жидкости вдоль плоской поверхности (пластины)
- •5.2. Теплоотдача при вынужденном ламинарном течении жидкости в трубах
- •Значение при ламинарном режиме
- •5.3. Теплоотдача при турбулентном движении жидкости в трубах
- •5.4 Теплоотдача при поперечном омывании одиночной трубы
- •5.5. Теплоотдача при поперечном омывании пучков труб
- •5.6. Теплоотдача при свободном движении жидкости
- •Числовые данные к заданию 2
- •Порядок расчёта
- •Числовые данные к заданию 3
- •Порядок расчета.
- •Порядок расчёта
- •Числовые данные к заданию 4
- •Порядок расчёта
- •Контрольные вопросы
- •6. Теплообмен при изменении агрегатного состояния вещества
- •6.1. Теплоотдача при кипении жидкости.
- •6.2. Теплоотдача при конденсации пара.
- •Числовые данные к заданию 5
- •Порядок расчёта
- •Контрольные вопросы
- •7. Теплопередача
- •7.1. Теплопередача через плоскую однослойную и многослойную стенки
- •7.2. Теплопередача теплоты через цилиндрическую однослойную и многослойную стенки
- •Числовые данные к заданию 6
- •Порядок расчёта
- •Числовые данные к заданию 7
- •Пример решения задания 7.
- •Порядок расчёта
- •Контрольные вопросы
- •8 Теплообмен излучением
- •8.1 Основные понятия
- •8.2. Виды лучистых потоков
- •8.3. Законы теплового излучения
- •8.4. Лучистый теплообмен между телами, разделёнными прозрачной средой
- •8.5. Экраны для защиты от излучения
- •8.6. Особенности излучения газов
- •8.7. Сложный теплообмен
- •Числовые данные к заданию 8
- •Пример решения задания 8.
- •Порядок расчёта
- •Числовые данные к заданию 9
- •Порядок расчёта
- •Контрольные вопросы
- •9. Теплообменные аппараты
- •9.1. Общие положения
- •9.2. Расчёт рекуперативных теплообменных аппаратов
- •Числовые данные к заданию 10
- •Порядок расчёта
- •I. Прямоток
- •II. Противоток
- •Контрольные вопросы
- •10. Теплопроводность при нестационарном режиме
- •10.1 Общие положения
- •10.2. Расчёт нестационарной теплопроводности неограниченной плоской пластины
- •10.3. Метод конечных разностей
- •10.4. Метод регулярного режима
- •Контрольные вопросы
- •11. Массообмен
- •11.1. Основные понятия
- •11.2. Закон Фика
- •11.3. Основные закономерности тепло- и массопереноса
- •Контрольные вопросы
- •Экзаменационные вопросы
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Физические свойства воды на линии насыщения
- •П риложение 2
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (аргумент - давление)
- •Тепломассообмен
- •308012, Г. Белгород, ул. Костюкова, 46
4.5. Подобие процессов конвективного теплообмена
Теория подобия позволяет, не интегрируя дифференциальных уравнений, получить из них критерии подобия и, используя опытные данные, установить критериальные зависимости, которые справедливы для всех подобных между собой процессов.
Для практического применения теории подобия в случае конвективного теплообмена, описываемого системой дифференциальных уравнений и условиями однозначности с большим количеством переменных, необходимо прежде всего знать числа подобия, которые войдут в уравнения подобия.
Система дифференциальных уравнений, в которую входят дифференциальные уравнения теплообмена между твердым телом и внешней средой, энергии, или теплопроводности, в движущейся жидкости, движения вязкой несжимаемой жидкости (или уравнение Навье — Стокса) и сплошности, позволяет выявить структуру этих чисел.
Основным критериями подобия для расчётов стационарных процессов конвективного теплообмена являются 5 критериев: Нуссельта (Nu) Рейнольдса (Re), Прандтля (Pr) и Грасгофа (Gr).
При расчёте тепловых
аппаратов основной задачей является
определение критерия Nu,
в который входит коэффициент теплоотдачи
и критерия Eu,
который включает величину
,
характеризующую гидравлическое
сопротивление при движении жидкости.
Для расчёта критериев Nu
и Eu
необходимо предварительно определить
величины чисел Re,
Pr
и Gr.
Процессы теплообмена при вынужденном движении теплоносителя и при свободной конвекции протекают по-разному. Различными оказываются также и критерии подобия для этих процессов. Поэтому эти два случая теплообмена целесообразно рассматривать вначале раздельно.
4.6. Условия подобия конвективного теплообмена при вынужденном движении теплоносителя
На практике встречается большое число разнообразных задач, в которых теплообмен происходит в условиях вынужденного движения теплоносителя. Они различаются по геометрической форме и конфигурации систем, в которых протекает процесс теплообмена, по кинематической картине и режиму течения потока. Различными могут быть также сами теплоносители — жидкости и газы. Однако для всех таких процессов условия подобия имеют единообразный, универсальный вид, определяемый теорией подобия.
Прежде всего подобными могут быть лишь процессы теплообмена протекающие в геометрически подобных системах. Далее, необходимой предпосылкой подобия должно быть подобие полей скорости, температуры и давления во входном или начальном сечении таких систем. При выполнении этих условий стационарные процессы конвективного теплообмена при вынужденном движении будут подобны, если два определяющих критерия – критерий Рейнольдса Re и критерий Прандтля Pr — для таких систем будут численно одинаковыми:
(4.21)
Критерий Рейнольдса (см. разд. 4.1) определяет гидромеханическое подобие течений теплоносителей:
R
(4.22)
где w0 — характерная, обычно средняя скорость жидкости или газа в начальном сечении системы; l — характерный геометрический размер системы (например, диаметр канала, длина пластины и т. д.); v — коэффициент кинематической вязкости теплоносителя.
Критерий Прандтля является теплофизической характеристикой теплоносителя. Он составлен лишь из физических параметров:
(4.23)
Pr=μcр/λ или Pr=v/a;
[так как v = μ/ρ и а = λ/(срρ)], и его численные значения приводятся в таблицах.
Критерий Прандтля характеризует физические свойства жидкости и способность распространения тела в жидкости. Он является мерой отношения переноса импульса в среде при помощи внутреннего трения к переносу тепла в ней посредством теплопроводности. Характеризует подобие полей скорости и температуры в движущейся среде.
При равенстве критерия Re условие одинаковости критериев Pr обеспечивает тепловое подобие, т.е. подобие полей температурных напоров и тепловых потоков во всём объёме рассматриваемых систем.
Согласно теории подобия у подобных процессов должны быть одинаковы также и определяемые критерии подобия. В процессах конвективного теплообмена в качестве определяемого критерия выступает критерий Нуссельта Nu:
N
(4.24)
где α — коэффициент теплоотдачи; l — характерный геометрический размер; λ — коэффициент теплопроводности теплоносителя.
Критерий Нуссельта характеризует конвективный теплообмен между жидкостью и поверхностью твёрдого тела. Он является мерой отношения между интенсивностью теплоотдачи и температурным полем в пограничном слое потока.
И
(4.25)
Nu=αl/λ=idem,
является следствием установившегося подобия.
Уравнение подобия или критериальное уравнение для процессов конвективного теплообмена при вынужденном движении теплоносителя имеет вид:
(4.26)
Nu=f(Re,Pr).