
- •1.Микропроцессорные устройства. Этапы развития, технологии производства.
- •Классификация микропроцессорных устройств. Назначение.
- •Микропроцессорная система, основные определения
- •Микропроцессор, программа.
- •Связь блоков в микропроцессорной системе, шины.
- •Структура мпс. Управляющие сигналы.
- •Программный обмен, обмен по прерываниям.
- •Прямой доступ к памяти.
- •9. Функции процессора.
- •1 0. Структура процессора.
- •11. Память процессора.
- •12. Устройства ввода-вывода.
- •13. Микроконтроллер, назначение и состав.
- •14. Система команд, виды архитектур.
- •15. Особенности архитектуры микроконтроллеров.
- •16. Минимизация энергопотребления.
- •17. Обеспечение надежности.
- •18. Дополнительные модули в микроконтроллерах.
- •19. Микроконтроллеры avr. Общие характеристики, устройство.
- •20. Типы и организация памяти микроконтроллеров avr.
- •21. Периферийные устройства, их назначение. Взаимодействие с цпу
- •22. Питание. Назначение выводов.
- •23. Ядро, регистр статуса, конвейер микроконтроллеров avr.
- •24. Классификация команд микроконтроллеров.
- •27.Представление чисел в микропроцессоре. Математические инструкции. Операции с многобайтными числами.
- •28. Команды умножения, операции с многобайтными числами.
- •29. Логические и битовые команды. Сдвиги. Операции сдвига с многобайтными числами.
- •36. Защита памяти программ и eeprom. Конфигурационные биты.
- •Конфигурационные биты
- •30. Деление, перевод в десятичную систему. Использование сдвигов вместо арифметических команд. Битовые маски.
- •Организация циклов, ветвлений. Р азветвление программы на две ветки с последующим соединением
- •Разветвление программы на три ветки с последующим соединением
- •33. Команды передачи данных. Адресация памяти данных.
- •33.Адресация памяти данных:
- •34. Директивы ассемблера avr
- •35. Макросы, выражения, функции ассемблера avr
- •37. Параллельное программирование
- •38. Последовательное програмирование, jtag
- •39. Устройство сброса микроконтроллера
- •40. Режимы энергосбережения
- •Минимизация потребляемой мощности
- •41. Порты ввода-вывода
- •42.Режимы работы портов ввода-вывода, альтернативные функции. Система прерываний.
- •43. Внешние прерывания
- •49. Режимы работы таймера. Шим с фазовой коррекцией.
- •50.Асинхронный режим работы таймера.
- •51.Синхронный режим. Устройство предделителей таймеров.
- •59. Аналоговый компаратор
- •56. Ацп. Устройство и принцип работы.
- •57. Выполнение преобразования ацп.
- •Режимы работы ацп. Регистры настройки ацп.
- •25.Типы адресации памяти, сегментации памяти
- •26.Ассемблер,структура команд, операнды. Виды регистровой адрессации
- •46. Режимы работы таймера. Нормальный режим.
- •47. Режимы работы таймера. Режим стс.
- •48. Режимы работы таймера. Быстрый шим.
- •53. Функциональные блоки 16-разрядного таймера-счетчика.
- •55. Режимы шим 16-разрядного таймера-счетчика.
57. Выполнение преобразования ацп.
Одиночное преобразование запускается путем записи лог. 1 в бит запуска преобразования АЦП ADSC. Данный бит остается в высоком состоянии в процессе преобразования и сбрасывается по завершении преобразования. Если в процессе преобразования переключается канал аналогового ввода, то АЦП автоматически завершит текущее преобразование прежде, чем переключит канал. |
В режиме автоматического перезапуска АЦП непрерывно оцифровывает аналоговый сигнал и обновляет регистр данных АЦП. Данный режим задается путем записи лог. 1 в бит ADFR регистра ADCSRA. Первое преобразование инициируется путем записи лог. 1 в бит ADSC регистра ADCSRA. В данном режиме АЦП выполняет последовательные преобразования, независимо от того сбрасывается флаг прерывания АЦП ADIF или нет.
|
Режимы работы ацп. Регистры настройки ацп.
Предделитель Модуль АЦП содержит предделитель, который формирует производные частоты по отношению к частоте синхронизации ЦПУ. Коэффициент деления устанавливается с помощью бит ADPS. Предделитель работает, пока бит ADEN = 1 и сброшен, когда ADEN=0. Если инициируется однополярное преобразование установкой бита ADSC в регистре ADCSRA, то преобразования начинаются со следующего нарастающего фронта тактового сигнала АЦП. По завершению преобразов. рез-т помещается в регистры данных АЦП и устанавливается флаг ADIF. |
|
Каналы дифференциального усиления Если входной сигнал содержит частотные составляющие выше частотного диапазона усилительного каскада, то необходимо установить внешний фильтр низких частот. Но частота синхронизации АЦП не связана с ограничением по частотному диапазону усилительного каскада. |
Изменение канала До нач. преобраз. любые изменения канала и опорного источника вступают в силу сразу после их модификации. Как только начинается процесс преобразования, доступ к изменению канала и опорного источника блокируется. Преобразов. начинается следующим нарастающим фронтом тактового сигнала АЦП |
Входные каналы АЦП В режиме одиночного преобразов. переключение канала необх. выполн. перед началом преобразования. При переключении на дифф. канал 1е преобразование будет характер. плохой точностью из-за переходного процесса, => первый результат такого преобразования нужно игнорировать. |
Источник опорного напряжения ИОН опред. диапазон преобразован. М.б. внутр. и внешн. ИОН. Внутр. опорное напряжение генерируется внутренним эталонным источником. Если пользователь использует внешний опорный источник, то не допускается использование другой опции опорного источника. |
Подавитель шумов АЦП характериз. возможн. подавления шумов, которые вызваны работой ядра ЦПУ и периферийных устройств ввода-вывода. Подавитель шумов м. б. использ. в режиме снижения шумов АЦП и в режиме холостого хода. АЦП не отключается автоматически при переводе во все режимы сна, кроме режима холостого хода и снижения шумов АЦП. Поэтому пользователь должен предусмотреть запись лог. 0 в бит ADEN перед переводом в такие режимы сна во избежание чрезмерного энергопотребления. |
|
Регистры настройки АЦП |
|
Рег-р упр-ия мультиплекс. ADMUX Разряд 7:6 Биты выбора источника опорного напряжения Данные биты определяют, какое напряжение будет использоваться в качестве опорного для АЦП. Разряд 5 ADLAR - Бит управления представлением результата преобразования Бит ADLAR влияет на представление результата преобразования в паре регистров результата преобразования АЦП. Если ADLAR = 1, то результат преобразования будет иметь левосторонний формат, в противном случае - правосторонний. Действие бита ADLAR вступает в силу сразу после изменения, независимо от выполняющегося параллельно преобразования. Разряд 4:0 – MUX4:0: Биты выбора аналогового канала и коэффициента усиления Данные биты определяют, какие из имеющихся аналоговых входов подключаются к АЦП. Кроме того, с их помощью можно выбрать коэффициент усиления для дифференциальных каналов. Если значения бит изменить в процессе преобразования, то механизм их действия вступит в силу только после завершения текущего преобразования (после установки бита ADIF в регистре ADCSRA). |
Регистр управления и статуса ADCSRA Разряд 7 – ADEN: Разрешение работы АЦП Запись в данный бит лог. 1 разрешает работу АЦП. Если в данный бит записать лог. 0, то АЦП отключается, даже если он находился в процессе преобразования. Р. 6 – ADSC: Запуск преобразования АЦП В режиме одиночного преобраз. установка данного бита инициирует старт каждого преобразования. В режиме автоматического перезапуска установкой этого бита инициируется только первое преобразование, а все остальные выполняются автоматически. Разряд 5 – ADFR: Выбор режима автоматического перезапуска АЦП Если в данный бит записать лог. 1, то АЦП перейдет в режим автоматического перезапуска. Запись лог. 0 в этот бит прекращает работу в данном режиме. Разряд 4 – ADIF: Флаг прерывания АЦП Данный флаг устанавливается после завершения преобразования АЦП и обновления регистров данных. Р. 3 – ADIE: Разрешение прерывания АЦП После записи лог. 1 в этот бит разрешается прерывание по завершении преобразования АЦП. Разряды 2:0 – ADPS2:0: Биты управления предделителем АЦП Данные биты определяют, на какое значение тактовая частота ЦПУ будет отличаться от частоты входной синхронизации АЦП. |