
- •1.Микропроцессорные устройства. Этапы развития, технологии производства.
- •Классификация микропроцессорных устройств. Назначение.
- •Микропроцессорная система, основные определения
- •Микропроцессор, программа.
- •Связь блоков в микропроцессорной системе, шины.
- •Структура мпс. Управляющие сигналы.
- •Программный обмен, обмен по прерываниям.
- •Прямой доступ к памяти.
- •9. Функции процессора.
- •1 0. Структура процессора.
- •11. Память процессора.
- •12. Устройства ввода-вывода.
- •13. Микроконтроллер, назначение и состав.
- •14. Система команд, виды архитектур.
- •15. Особенности архитектуры микроконтроллеров.
- •16. Минимизация энергопотребления.
- •17. Обеспечение надежности.
- •18. Дополнительные модули в микроконтроллерах.
- •19. Микроконтроллеры avr. Общие характеристики, устройство.
- •20. Типы и организация памяти микроконтроллеров avr.
- •21. Периферийные устройства, их назначение. Взаимодействие с цпу
- •22. Питание. Назначение выводов.
- •23. Ядро, регистр статуса, конвейер микроконтроллеров avr.
- •24. Классификация команд микроконтроллеров.
- •27.Представление чисел в микропроцессоре. Математические инструкции. Операции с многобайтными числами.
- •28. Команды умножения, операции с многобайтными числами.
- •29. Логические и битовые команды. Сдвиги. Операции сдвига с многобайтными числами.
- •36. Защита памяти программ и eeprom. Конфигурационные биты.
- •Конфигурационные биты
- •30. Деление, перевод в десятичную систему. Использование сдвигов вместо арифметических команд. Битовые маски.
- •Организация циклов, ветвлений. Р азветвление программы на две ветки с последующим соединением
- •Разветвление программы на три ветки с последующим соединением
- •33. Команды передачи данных. Адресация памяти данных.
- •33.Адресация памяти данных:
- •34. Директивы ассемблера avr
- •35. Макросы, выражения, функции ассемблера avr
- •37. Параллельное программирование
- •38. Последовательное програмирование, jtag
- •39. Устройство сброса микроконтроллера
- •40. Режимы энергосбережения
- •Минимизация потребляемой мощности
- •41. Порты ввода-вывода
- •42.Режимы работы портов ввода-вывода, альтернативные функции. Система прерываний.
- •43. Внешние прерывания
- •49. Режимы работы таймера. Шим с фазовой коррекцией.
- •50.Асинхронный режим работы таймера.
- •51.Синхронный режим. Устройство предделителей таймеров.
- •59. Аналоговый компаратор
- •56. Ацп. Устройство и принцип работы.
- •57. Выполнение преобразования ацп.
- •Режимы работы ацп. Регистры настройки ацп.
- •25.Типы адресации памяти, сегментации памяти
- •26.Ассемблер,структура команд, операнды. Виды регистровой адрессации
- •46. Режимы работы таймера. Нормальный режим.
- •47. Режимы работы таймера. Режим стс.
- •48. Режимы работы таймера. Быстрый шим.
- •53. Функциональные блоки 16-разрядного таймера-счетчика.
- •55. Режимы шим 16-разрядного таймера-счетчика.
14. Система команд, виды архитектур.
С точки зрения системы команд и способов адресации операндов процессорное ядро современных 8-разрядных МК реализует один из двух принципов построения процессоров:
- процессоры с CISC-архитектурой, реализующие так называемую полную систему команд;
-процессоры с RISC-архитектурой, реализующие сокращенную систему команд.
CISC(Complicated Instruction Set Computer)-процессоры выполняют большой набор команд с развитыми возможностями адресации, давая разработчику возможность выбрать наиболее подходящую команду для выполнения необходимой операции.
В применении к 8-разрядным МК процессор с CISC-архитектурой может иметь однобайтовый, двухбайтовый и трехбайтовый (редко четырехбайтовый) формат команд. При этом система команд, как правило, неортогональна, то есть не все команды могут использовать любой из способов адресации применительно к любому из регистров процессора. Выборка команды на исполнение осуществляется побайтно в течение неск-х циклов работы МК.
Время выполнения команды может составлять от 1 до 12 циклов. К МК с CISC-архитектурой относятся МК фирмы Intel с ядром MCS-51, которые поддерживаются в настоящее время целым рядом производителей, МК семейств НС05, НС08 и НС11 фирмы Motorola и ряд др.
В
процессорах с
RISC (Reduced
Instruction Set Computer) архитектурой набор
исполняемых команд сокращен до
минимума.Для реализации более сложных
операций приходится комбинировать
команды. При этом все команды имеют
формат фиксированной длины (например,
12, 14 или 16 бит), выборка команды из памяти
и ее исполнение осуществляется за один
цикл (такт) синхронизации. Система
команд RISC-процессора предполагает
возможность равноправного использования
всех регистров процессора. Это
обеспечивает дополнительную гибкость
при выполнении ряда операций. К МК с
RISC-процессором относятся МК AVR фирмы
Atmel, МК PIC16 и PIC17 фирмы Microchip и др.С точки
зрения организации процессов выборки
и исполнения команды в современных
8-разрядных МК применяется одна из двух
уже упоминавшихся архитектур МПС:
В Гарвардской архитектуре принципиально невозможно производить операцию записи в память программ, что исключает возможность случайного разрушения управляющей программы в случае неправильных действий над данными. Кроме того, в ряде случаев для памяти программ и памяти данных выделяются отдельные шины обмена данными. Гарвардская архитектура применяется в МК, где требуется обеспечить высокую надёжность работы аппаратуры и в сигнальных процессорах, где эта архитектура кроме обеспечения высокой надёжности работы устройств позволяет обеспечить высокую скорость выполнения программы, за счёт одновременного считывания управляющих команд и обрабатываемых данных, а так же запись полученных результатов в память данных.
Архитектура Фон Неймана - возможность работы над управляющими программами так же как над данными. Позволяет производить загрузку и выгрузку управляющих программ в произвольное место памяти процессора, кот. в этой структуре не разделяется на память программ и память данных. Люб. участок памяти может служить как памятью программ, так и памятью данных. Причём в разные моменты времени одна и та же область памяти может использоваться и как память программ и как память данных. Для того, чтобы программа могла раб-ть в произвольной области памяти, её нужно модернизировать перед загрузкой, т.е. работать с нею как с обычными данными. Эта особенность архитектуры позволяет управлять работой МПС, но создаёт возм-сть искажения управляющей программы, что понижает надёжность работы аппаратуры. Эта архитектура используется в универсальных компьютерах и в некоторых видах МК.