
- •1. Система плоских прямоугольных координат (Гаусса –Крюгера) в геодезии.
- •2. Рельеф местности, его формы. Изображение его на планах и картах горизонталями, свойства горизонталей.
- •3. Определение дирекционных углов замкнутого и разомкнутого теодолитного хода (вывод формулы). Контроль вычисления.
- •4. Прямая и обратная геодезические задачи.
- •5. Плановая привязка пунктов теодолитного хода к твердым пунктам способом угловой засечки.
- •6. Плановая привязка пунктов теодолитного хода к твердым пунктам способом снесения координат.
- •7. Плановая привязка пунктов теодолитного хода к одному твердому пункту, с известным направлением в нем.
- •8. Измерение линий лентой. Компарирование мерных лент. Приведение наклонных линий к горизонту.
- •9. Нитяной дальномер, его теория (вывод формулы), его точность.
- •10. Закрепление и обозначение на местности вершин теодолитного хода. Вешение линий. Измерение длин и углов в теодолитном ходе. Контроль вычисления.
- •11. Способы определения положения точек местности (съемка ситуации).
- •12. Способы геометрического нивелирования. Их достоинства и недостатки. Последовательное нивелирование.
- •13. Определение превышений и высот методом геометрического нивелирования с учетом поправок за кривизну Земли и рефракцию.
- •14. Определение превышений и высот методом тригонометрического нивелирования.
- •15. Определение превышений и высот методом тригонометрического нивелирования с учетом поправок за рефракцию и кривизну Земли.
- •16. Подготовка тахеометра на станции для производства тахеометрической съемки.
- •17. Ориентирование тахеометра по стороне теодолитного хода и по магнитному меридиану.
- •18. Съемка ситуации и рельефа тахеометром. Абрис тахеосъемки.
- •19. Летно – съемочные работы при аэрофотосъемке, продольное и поперечное перекрытие снимков, его назначение. Базис фотографирования.
- •20. Аэроснимок, его масштаб, причины искажения масштаба аэроснимка.
- •21. Трансформирование аэроснимков. Составление фотопланов.
- •22. Фототриангуляция, ее назначение.
- •23. Камеральное и полевое дешифрование аэрофотоснимка, его назначение.
- •24. Изображение рельефа горизонталями при аэрофотосъемке (комбинированный дифференцированный и универсальный способы).
- •26. Определение дирекционных углов сторон трассы по углам поворота (вывод формулы). Контроль измерений на трассе.
- •27. Разбивка пикетажа, поперечников, съемка полосы местности. Пикетажный журнал.
- •28. Круговая линия, ее назначения. Определение ее элементов (вывод формулы).
- •29. Расчет пикетажного положения главных точек кривой. Разбивка кривой в главных точках местности. Вынос пикетов на кривую.
- •30. Детальная разбивка кривой способом прямоугольных координат от тангенсов.
- •31. Детальная разбивка кривой способом углов и хорд.
- •32. Переходная кривая, ее назначения, элементы.
- •33. Железнодорожная кривая (закругления с переходными кривыми), определение ее элементов.
- •34. Нивелирование трассы по пикетажу (работа с нивелиром на станции). Нивелирование поперечников.
- •35. Нивелирование оврагов. Нивелирование через реки.
- •36. Виды контроля нивелирования трассы.
- •37. Понятие о геодезических разбивочных работах. Геодезическая основа разбивочных работ.
- •38. Построение проектного горизонтального угла. Построение проектной линии.
- •39. Вынос на местность проектных отметок.
- •40. Вынос проектных отметок, находящихся в глубоком котловане или на высоком сооружении.
- •41. Построение линии и плоскости заданного уклона нивелиром.
- •42. Построение линии заданного уклона теодолитом.
- •43. Способы геодезических разбивочных работ.
- •44. Вынос точки способом полярных координат. Его точность.
- •45. Вынос точки способом прямой угловой засечки. Его точность.
- •46. Вынос точки способом линейной засечки. Его точность.
- •47. Вынос точки способом створной засечки. Его точность.
- •48. Вынос точки способом перпендикуляров. Его точность.
- •49. Геодезическая подготовка проекта для выноса его на местность.
- •50. Геодезические работы при строительстве железных дорог. Восстановление трассы.
- •51. Разбивка строительных поперечников.
- •5 2. Разбивка поперечников в насыпи.
- •53. Разбивка поперечников в выемке.
- •54. Геодезические работы при сооружении земляного полотна.
- •55. Разбивочные работы при укладке верхнего строения пути.
- •56. Геодезические работы при изысканиях мостовых переходов. Разбивка и закрепление осей малых мостовых труб.
- •57. Переход через большие водотоки. Изыскания больших мостовых переходов.
- •58. Способ тригонометрического нивелирования через водотоки.
- •59. Передача отметок через водотоки гидростатическим нивелированием.
- •60. Геоинформационные системы мостового перехода.
- •61. Геодезические работы при эксплуатации железных дорог.
- •62. Съемка железнодорожных кривых способом изгиба стрел.
- •63. Съемка железнодорожных кривых способом эвольвентных разностей (и.В. Гонинберга).
- •64. Съемка железнодорожных кривых электронным тахеометром.
- •65. Съемка железнодорожных станций.
- •66. Съемка сортировочных станций.
- •67. Съемка искусственных сооружений.
- •68. Исполнительные съемки.
- •69. Наблюдения за деформациями сооружений. Виды деформаций.
- •70. Наблюдения за сооружениями на оползнях.
- •71. Съемка больных мест земляного полотна.
- •72. Геоинформационные технологии. Понятия и определение.
- •73. Работа с графической информацией.
- •74. Работа с базами данных. Вывод геоинформации.
- •75. Геоинформационные системы железнодорожного транспорта.
15. Определение превышений и высот методом тригонометрического нивелирования с учетом поправок за рефракцию и кривизну Земли.
В предыдущем разделе при определении разности высот двух точек тригонометрическим нивелированием, предполагалось, что расстояние между этими точками невелико и отвесные линии, проходящие через точки А и В, можно считать параллельными, а визирный луч – прямой линией. На самом деле при расстояниях больше 300 м приходится учитывать поправки за кривизну Земли K и рефракцию r (рис. 74)
Возведем каждое из равенств в квадрат, сложим и разделим на n, получаем
где
представляют собой частные производные
данной функции, вычисленные для
соответствующих значений аргументов.
16. Подготовка тахеометра на станции для производства тахеометрической съемки.
Работу на станции при тахеометрической съемке выполняют следующим образом. Устанавливают теодолит в рабочее положение над точкой хода (центрируют и горизонтируют прибор), измеряют высоту прибора V, отмечают её на рейке и записывают в журнал. При круге право «П» наводят зрительную трубу на рейку, установленную на соседнюю (заднюю или переднюю) точку хода, и берут отсчет по вертикальному кругу. Далее переводят трубу через зенит и ориентируют лимб по стороне хода, т.е. по горизонтальному кругу устанавливают отсчет 0°, закрепляют алидаду и, вращая лимб, направляют зрительную трубу на рейку. Затем берут отсчет по вертикальному кругу при круге лево «Л» и вычисляют место нуля (МО) вертикального круга. Отсчеты и значение МО записывают в журнал. После указанных действий приступают к съемке подробностей (характерных точек ситуации и рельефа) на станции, все измерения записывают в тахеометрический журнал.
17. Ориентирование тахеометра по стороне теодолитного хода и по магнитному меридиану.
В инженерной практике используется обычный или электронный теодолит (тахеометр). Ориентирование по истинному азимуту возможно, если иметь истинный азимут любой линии на местности, проходящей через исходную точку. Здесь происходит как бы замена меридиана на линию с известным истинным азимутом. Этот вопрос решается путём астрономических наблюдений Солнца в определённое время суток. Всё это вызывает некоторые трудности непосредственного использования истинных азимутов или дирекционных углов для ориентирования проектных линий на местности: необходимо или иметь специальный прибор, или производить дополнительные специальные геодезические работы. Во многих случаях на местности целесообразнее использовать магнитный азимут или румб для ориентирования линий на местности. Магнитная стрелка наглядно указывает направление магнитного меридиана и от него при помощи буссоли можно легко и просто ориентировать проектную линию. Некоторые погрешности в определении магнитных азимутов корректируются в процессе закрепления данной линии в натуре. Следовательно, в практическом отношении ориентирование линии на местности нужно производить следующим образом: на карте измерить истинный азимут или дирекционный угол и по ним вычислить магнитный азимут, который и использовать при работе на местности. Для вычисления магнитного азимута в первом случае нужна величина склонения магнитной стрелки, а во-втором –ещё и сближение меридианов. Величины сближения меридианов и склонения магнитной стрелки на данной территории приведены в нижнем левом углу карт. Однако следует отметить , что не всегда нужно слепо использовать те данные, которые приводятся там. В приводимом тексте даны некоторые усреднённые величины сближения меридианов и склонения магнитной стрелки. Методически правильно самим вычислить или определить эти значения, о чём речь пойдёт ниже.
Тахеометрическая съемка – основной вид съемки для создания планов небольших незастроенных и малозастроенных участков, а также узких полос местности, вдоль линий будущих дорог, трубопроводов и других коммуникаций. С появлением тахеометров-автоматов этот способ становится основным и для значительных по площади территорий, особенно когда необходимо получить цифровую модель местности. При тахеометрической съемке ситуацию и рельеф снимают одновременно, но в отличие от мензульной съемки план составляют в камеральных условиях по результатам полевых измерений.
Съемку производят с исходных точек – пунктов любых опорных и съемочных геодезических сетей. Съемочная сеть может быть создана в виде теодолитно-нивелирных ходов, когда отметки точек теодолитного хода определяют геометрическим нивелированием. В большинстве же случаев для съемки прокладывают тахеометрические ходы, отличающиеся тем, что все элементы хода (углы, длины линий, превышения) определяют теодолитом или тахеометром-автоматом.
При этом одновременно с проложением тахеометрического хода производят съемку. В этом главное отличие тахеометрической съемки от других видов топографических съемок.