Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рамазанов отчёт.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
658.43 Кб
Скачать

8. Исследование скважин

         В процессе эксплуатации скважин осуществляется их исследование в целях контроля технического состояния эксплуатационной колонны, работы оборудования, проверки соответствия параметров работы скважин установленному технологическому режиму, получения информации, необходимой для оптимизации этих режимов. 

         При исследовании скважин: 

         а)проверяется  техническое состояние  скважины и установленного оборудования (герметичность  цементного камня, обсадной колонны и насосно  компрессорных труб, состояние призабойной  зоны пласта,загрязненность ствола скважины, подача насосов, работа установленных на глубине клапанов и других устройств);

         б) оценивается надежность и работоспособность  узлов оборудования, определяется меж  ремонтный период работы оборудования и скважин;

         в) получают информацию,необходимую  для планирования различного рода ремонтно восстановительных и других работ в скважинах, а также для установления технологической эффективности этих работ.

         Для решения перечисленных  задач используется комплекс различного рода исследований и  измерений (замер  дебита нефти, обводненности продукции, газового фактора, глубинные измерения температур и давлении,промеры глубин, динамометрирование, запись расходов рабочего агента, учет отказов и ремонтов оборудования, анализ проб продукции скважин и др.).

         Виды, объем и периодичность исследований и измерений с целью контроля за работой оборудования для всех способов эксплуатации скважин устанавливаются  управлением совместно с научно исследовательскими организациями и геофизическими предприятиями .

         Исследования  по контролю за работой добывающих скважин должны осуществляться в полном соответствии с правилами безопасности в нефтегазодобывающей промышленности, с соблюдением требований охраны недр и окружающей среды.

         Основой исследования УШГН является динамометрирование – метод оперативного контроля за работой подземного оборудования и основа установления правильного технологического режима работы насосной установки.

         Суть  метода заключается  в том, что нагрузку на сальниковый шток определяют без подъема  насоса на поверхность  с помощью динамографа. На бумаге в виде диаграммы записываются нагрузки при ходе вверх и вниз в зависимости от перемещения штока.

         Волнометрирование выполняется при  помощи эхолота, который  позволяет определить динамический уровень  в скважинах глубиной до 4000 м. при давлении в затрубном пространстве до 7,5 МПа. На забое и по стволу скважины давление и температуру измеряют с помощью глубинных  термометров, которые объединяются в одном приборе.

9. Методы увеличения производительности скважин

Дебиты газовых скважин при одинаковых диаметрах, режимах эксплуатации пласта, величине пластового давления можно увеличить снижением фильтрационного сопротивления при дви­жении газа в призабойной зоне пласта. Это возможно за счет образования каналов, каверн и трещин в ней, уменьшения содержания твердых частиц и жидкостей в поровых каналах.

Известны следующие методы воздействия на призабойную зону пласта.

1) Физико-химические: солянокислотная обработка(СКО); термокис­лотная обработка(ТКО); обработка поверхностно-активными веществами (ПАВ); осушка призабойной зоны сухим обезвоженным газом;

2) Механические: торпедирование; гидравлический разрыв пла­ста (ГРП); гидропескоструйная перфорация (ГПП); ядерный взрыв;

3) Комбинированные: ГРП+СКО; ГПП+СКО.

Выбор метода воздействия на призабойную зону скважин зави­сит от литологического и минералогического составов пород и цементирующего материала газоносных горных пород, давления и температуры газа и пород пласта, толщины продуктивного гори­зонта, неоднородности пласта вдоль разреза.

Солянокислотная и термокислотная обработка призабойных зон скважин дают хорошие результаты в слабопроницаемых кар­бонатных породах (известняках, доломитах) и песчаниках с кар­бонатным цементирующим веществом. В песчаниках с глинистым цементирующим материалом эффективна обработка соляной и плавиковой кислотами (так называемой грязевой кислотой).

Солянокислотная обработка основана на способности соляной кислоты растворять карбонатные породы.

В зависимости от пластовых условий на практике применяют 8—15%-

ную соляную кислоту. Техническая соляная кислота поставляется заводами концентрированной, На промысле ее разбавляют водой до нужной концентрации.

Рис. 3. Схема проведения кислотной обработки.

Для снижения коррозии металлического оборудования в про­цессе СКО используют вещества, называемые ингибиторами кор­розии, в качестве которых применяют формалин (CH2O), уникол ПБ-5, И-1-А с уротропином, а также сульфонол, ДС-РАС, диссольван 4411, нейтрализованный черный контакт.

Продукты взаимодействия кислоты с породой удаляются из пласта в процессе освоения скважины. Для облегчения этого процесса в кислоту добавляют интенсификаторы, снижающие по­верхностное на-тяжение продуктов реакции – НЧК, спирты, препа­рат ДС и другие ПАВ.

Порядок добавления различных реагентов в кислоту при под­готовке ее к закачке в скважину следующий: вода — ингибиторы — стабилизаторы (уксусная и плавиковая кислоты) — техническая соляная кислота — хлористый барий — интенсификатор.

Кислота нагнетается в скважину в объеме от 0,5—0,7 до 3—4 м3 на 1 м длины фильтра с помощью специальных агрегатов, на­пример Азинмаш-30, смонтированных на автомашине КрАЗ-219, а также цементировочных агрегатов ЦА-300, ЦА-320М, 2АН-500. Время реакции кислоты с момента окончания закачки не должно превышать 6—8 ч. Результаты определяют по данным исследова­ний скважин после обработки. Обработка считается успешной, если уменьшается коэффициент С, увеличивается дебит скважи­ны при той же депрессии на пласт.

Торпедирование, гидравлический разрыв пласта, гидропескоструйную перфорацию и ядерные взрывы, обычно применяют в пластах, сложенных крепкими, плотными породами, имеющими небольшие проницаемость, пористость, но высокое пластовое давление.

Сущность гид­равлического разрыва пласта — создание на забое скважин вы­сокого давления, которое превышало бы местное горное давле­ние на величину, зависящую от прочностных свойств горных по­род. При таком увеличении давления в пласте образуются тре­щины или расширяются ранее существовавшие, что приводит к значительному увеличению проницаемости пласта. Созданные трещины закрепляют крупнозернистым песком.

Рис. 4. Схема проведения гидравлического разрыва пласта:

1 - продуктивный пласт; 2 - НКТ; 3 - эксплуатационная колона; 4 – пакер

Давление гидравлического разрыва, ориентация и размеры образующихся при этом трещин зависят от горного давления, т. е. давления вышележащих горных пород, характера и пара­метров естественной трещиноватости газоносных пород, а также величины пластового давления.

В процессе гидравлического разрыва пласта должны быть созданы такие условия, при ко­торых в пласте возникают и за­крепляются трещины. Скорости нагнетания жидкости разрыва должны быть такими, чтобы за­качиваемый объем превышал приемистость пласта, подвергаю­щегося гидравлическому разры­ву. Необходимая скорость закач­ки зависит от вязкости жидкости разрыва и параметров призабойной зоны. Из этого следует, что в низкопрони­цаемых породах гидравлический разрыв может быть при сравнительно малых скоростях закачки с использованием жидкостей небольшой вязкости. В высокопроницаемых породах необходимо применять жидкости разрыва большой вязкости или существенно повышать скорости нагнетания.