Зависимость плотности от температуры

Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого числа.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.

Отношение П. двух веществ при определённых стандартных физических условиях называется относительной П.: для жидких и твёрдых веществ она обычно определяется по отношению к П. дистиллированной воды при 4 °С, для газов — по отношению к П. сухого воздуха или водорода принормальных условиях.

Единицей П. в СИ является кг/м3, в СГС системе единиц г/см3. На практике пользуются также внесистемными единицами П.: г/лт/м3 и др.

Для измерения П. веществ применяют плотномеры, пикнометры, ареометры, гидростатическое взвешивание (см. Мора весы). Др. методы определения П. основаны на связи П. с параметрами состояния вещества или с зависимостью протекающих в веществе процессов от его П. Так, плотность идеального газа может быть вычислена по уравнению состояния r = pm/RT, где р —давление газа, m — его молекулярная масса (мольная масса), R — газовая постоянная, Т — абсолютная температура, или определена, например, по скорости распространения ультразвука (здесь b — адиабатическая сжимаемость газа).

Диапазон значений П. природных тел и сред исключительно широк. Так, П. межзвёздной среды не превышает 10-21кг/м3, средняя П. Солнца составляет 1410 кг/м3, Земли — 5520 кг/м3,наибольшая П. металлов — 22 500 кг/м3(осмий), П. вещества атомных ядер — 1017кг/м3, наконец, П. нейтронных звёзд может, по-видимому, достигать 1020кг/м3.

Манометр — это механический измерительный прибор, конструктивно представляющий собой стальной или пластиковый циферблат с пружиной в виде трубки, предназначенный для измерения давления жидких и газообразных веществ.

В механических манометрах измеряемое давление с помощью чувствительного элемента преобразуется в механическое перемещение, вызывающее механическое отклонение стрелок или других деталей механизмов отсчета, записи результата измерений, а также устройств сигнализации и стабилизации давлений в системах контролируемого объекта. В качестве чувствительных элементов механических манометров применяются трубчатые пружины, гармониковые (сильфонные) и плоские мембраны и другие измерительные механизмы, в которых под действием давления вызываются упругие деформации или упругости специальных пружин.

По точности все механические манометры делятся на: технические, контрольные и образцовые. Технические манометры имеют классы точности 1,5; 2,5; 4; контрольные 0,5; 1,0; образцовые 0,16; 0,45.

Манометрические трубчатые пружины представляют собой пустотелые трубки овального или иного сечения, изогнутые по дуге окружности, по винтовой или спиральной линиям и имеющие один или несколько витков. В обычной конструкции, которая наиболее часто применяется на практике, используются одновитковые пружины. Принципиальная и структурная схемы манометра с одновитковой трубчатой пружиной представлены на рис.2.

Рис.2. Механический манометр и его характеристики

К штуцеру 1 припаян конец манометрической пружины 5. Второй запаянный конец К шарнирно связан тягой 3 с рычагом зубчатого сектора 4. Зубья сектора сцеплены с ведомым зубчатым колесом 6, которое насажено на ось 7 стрелки 9. Для устранения колебаний стрелки из-за зазоров между зубьями зубчатой передачи применяют спиральную пружину 2, концы которой связаны с корпусом и осью 7. Под стрелкой находится неподвижная шкала.

Под действием разности давлений внутри и снаружитрубчатая пружина меняет форму своего сечения, в результате чего ее запаянный конецК перемещается пропорционально действующей разности давлений .

Структурная схема механического манометра (рис.2,б) состоит из трех линейных звеньев I, II, III, статические характеристики которых представлены графиками ,и, где– перемещение свободного конца трубчатой пружины,– начальный центральный угол трубчатой пружины. Благодаря линейности всех звеньев общая статическая характеристикаманометра линейна и шкала равномерна. Входной величиной звенаI является измеряемое давление , а выходной – перемещениесвободного (запаянного) конца манометрической пружины5. Тяга 3 с рычагом зубчатого сектора 4 образует второе звено. Входной величиной звена II является , а выходной – угловое отклонение конца манометрической пружины. Входной величиной звенаIII (звено III - это зубчатый сектор, сцепленный с ведомым зубчатым колесом 6) служит угловое отклонение , а выходной – угловое отклонение стрелки9 от нулевой отметки шкалы 8.

Механические манометры применяют для измерений в области низкого вакуума. В деформационных манометрах упругий элемент, связанный с индикатором, прогибается под действием разницы измеряемого и эталонного давлений (атмосфера или высокий вакуум). В сильфонных промышленных манометрах серии ВС-7 измеряемое давление вызывает перемещение сильфона, передающееся самописцу. Эти приборы имеют линейную шкалу до 760 тор и точность показаний 1,6%.

Список использованной литературы: