Вязкостью  называется  способность жидкости сопротивляться относительному перемещению ее частиц при воздействии внешних сил, т.е. наличие вязкости обуславливает возникновение сил внутреннего трения в движущейся жидкости.

Вязкость характеризуется динамическим μ или кинематическим коэффициентами вязкости υ, связанными между собой соотношением:

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица — градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011−1012 Па·с

Прибор для измерения вязкости называется вискозиметром.

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию междуплоскостями h:

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости.

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газав зависимости от температуры:[1]

где:

  • μ = динамическая вязкость в (Па·с) при заданной температуре T,

  • μ0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T0,

  • T = заданная температура в Кельвинах,

  • T0 = контрольная температура в Кельвинах,

  • C = постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Динамический коэффициент вязкости

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:

Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь  — плотность жидкости;  — динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм21c = 10−6 м2c

Пло́тность — скалярнаяфизическая величина, определяемая как отношениемассытела к занимаемому этим теломобъёмуилиплощади(поверхностная плотность). Более строгое определение плотности требует уточнение формулировки:

  • Средняя плотность тела — отношение массы тела к его объёму. Для однородного тела она также называется просто плотностью тела.

  • Плотность вещества — это плотность тел, состоящих из этого вещества. Отсюда вытекает и короткая формулировка определения плотности вещества: плотность вещества — это масса его единичного объёма.

  • Плотность тела в точке — это предел отношения массы малой части тела (), содержащей эту точку, к объёму этой малой части (), когда этот объём стремится к нулю[1], или, записывая кратко, . При таком предельном переходе необходимо помнить, что на атомарном уровне любое тело неоднородно, поэтому необходимо остановиться на объёме, соответствующем используемойфизической модели.

Исходя из определения плотности, её размерность кг/м³ в системе СИи в г/см³ в системеСГС.

Для сыпучих и пористых тел различают:

  • истинную плотность, определяемую без учёта пустот;

  • удельную (кажущуюся) плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму.

Истинную плотность из кажущейся получают с помощью величины коэффициента пористости — доли объёма пустот в занимаемом объёме.

Плотность (плотность однородного тела или средняя плотность неоднородного) находится по формуле:

где m — масса тела, V — его объём; формула является просто математической записью определения термина «плотность», данного выше.

  • При вычисления плотности газовэта формула может быть записана и в виде:

где М — молярная массагаза,—молярный объём(принормальных условияхравен 22,4 л/моль).