
- •1) Электромагнитное поле
- •2) Свойства векторных полей (поток и циркуляция).
- •3) Уравнения Максвелла в интегральной форме
- •4) Электростатика и магнитостатика, как частные случаи электромагнитного поля. Их основные характеристики.
- •5) Понятие о заряде.
- •6) Распределение зарядов в пространстве (плотность зарядов).
- •6) Теорема Остроградского Гаусса и ее применение для вычисления напряженности простейших полей.
- •7) Проводники в электрическом поле. Условия равновесия зарядов на поверхности проводника.
- •8 ) Напряженность поля вблизи поверхности заряженного проводника.
- •9) Генератор Ван Де Графа.
- •1 0) Электроемкость проводников.
- •11) Конденсаторы.
- •12) Энергия электрического поля.
- •13) Диэлектрики в электрическом поле.
- •14) Опыт Фарадея.
- •15) Поляризация диэлектриков.
- •16) Свободные и связанные заряды.
- •17) Вектор поляризации.
- •18) Напряженность поля внутри диэлектрика.
- •19) Теорема Остроградского Гаусса при наличии диэлектрика.
- •20) Сегнетоэлектрики и их свойства.
- •20) Ток проводимости. Вектор плотности тока.
- •21) Закон Ома в дифференциальной и интегральной форме.
- •22) Сопротивление. Закон Джоуля Ленца.
- •23) Классическая электронная теория электропроводимости металлов и ее трудности.
- •24) Магнитное поле в вакууме
- •25) Опыты Эйхенвальда и Иоффе.
- •26) Сила Ампера.
- •2 7) Закон Био-Сава-Лапласа и его применение
- •28) Поток и циркуляция вектора магнитной индукции.
- •29) Магнитное поле кругового тока.
- •30) Сила Лоренца.
- •31) Случаи движения заряженной частицы в магнитном поле.
- •3 2) Работа по перемещению проводника с током в магнитном поле.
- •33) Магнитное поле в веществе.
- •34) Намагничивание вещества.
- •35) Магнетики.
- •36) Закон полного тока в магнетиках.
- •37) Природа диамагнетизма. Теорема Лармора.
- •38) Парамагнетики, ферромагнетики и их свойства.
- •39) Явление электромагнитной индукции. Закон фарадея. Правило Ленца
- •40) Самоиндукция и взаимоиндукция.
- •41) Опыты Фарадея.
- •42) Уравнения фарадея и их физический смысл. Ток смещения.
- •43) Значение теории Максвелла.
- •42) Интерференция волн. Условия когерентности.
- •43) Полосы равной толщины и равного наклона.
- •44) Явление дифракции. Принцип Гюйгенса-Френеля.
- •45) Метод зон Френеля.
5) Понятие о заряде.
Электрический заряд – это физическая
величина, характеризующая свойство
частиц или тел вступать в электромагнитные
силовые взаимодействия (Значение заряда
9,1 *
.
Электромагнитные взаимодействия – это взаимодействия между заряженными частицами или телами.
Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:
Существует два рода электрических зарядов, условно названных положительными и отрицательными.
Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.
Зарядить тело это означает перенести или унести с поверхности данного тела некоторое количество электронов или ионов.
Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.
В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:
q1 + q2 + q3 + ... +qn = const.
Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.
Закон Кулона:
Силы взаимодействия неподвижных зарядов
прямо пропорциональны произведению
модулей зарядов и обратно пропорциональны
квадрату расстояния между ними:
6) Распределение зарядов в пространстве (плотность зарядов).
Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.
На практике часто встречаются случаи,
когда заряженное тело настолько велико,
что использование модели точечного
заряда не представляется возможным, в
этом случае для определения параметров
поля необходимо знать распределение
зарядов внутри тела, т.е. по его объёму.
В этом случае поступают по аналогии с
определением плотности тела, весь объём
тела V разбивается на большое количество
элементарных объёмов ΔV, заряд которых
будет Δq. В этом случае заряженность
тела можно охарактеризовать объёмной
плотностью заряда
– Объемная плотность.
Для целого класса веществ, например,
для проводников, характерно присутствие
электрических зарядов только в достаточно
тонком поверхностном слое. В этом случае
характерной величиной при анализе полей
будет поверхностная плотность зарядов,
которая по аналогии с уравнением
определится как
– Поверхностная плотность заряда. Где
dq — заряд, заключенный в слое площади
dS, dS – физически бесконечно малый участок
поверхности.
Проводники, длина которых существенно
больше их прочих размеров удобно
характеризовать линейной плотностью
заряда
– Линейная плотность заряда. Где dl —
длина физически бесконечно малого
отрезка цилиндра, dq — заряд, сосредоточенный
на этом отрезке.